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Abstract

As an important exploratory analysis, curves of similar shape are often classified

into groups, which we call clustering of functional data. Phase variations or time

distortions are often encountered in the biological processes, such as growth patterns

or gene profiles. As a result of time distortion, curves of similar shape may not be

aligned. Regular clustering methods for functional data usually ignore the presence of

phase variations, which may result in low clustering accuracy. However, it is difficult

to account for phase variation without knowing the cluster structure.

In this dissertation, we first propose a Bayesian method that simultaneously clus-

ters and registers functional data. We model a warping function with a discrete ap-

proximation generated from the family of Dirichlet distributions, which allows great

flexibility and computational simplicity. Then, we modify our Bayesian algorithm to

obtain a fast registration method, which does not require any template curve. We

propose a distance-based clustering method that uses a “derivative sign” to measure

the dissimilarity between two curves after potential phase variations are removed.

Finally, we derive a modified variational approximation for our Bayesian method for

simultaneous registration and clustering, which produces a faster alternative for the

full Markov chain Monte Carlo (MCMC) sampling.

We demonstrate our proposed methods on simulated data as well as the famous

Berkeley growth data, a set of yeast gene profile data, and a set of response of human

fibroblasts to serum data.
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Chapter 1

Introduction

Functional data analysis (FDA) extends existing statistical tools to data represented

by curves or surfaces over time, space, or another domain. FDA techniques are widely

used in the studies of gene expression, handwriting, and image data, among other

applications. One advantage of functional data analysis over traditional multivariate

analysis is the ability to examine higher-order derivatives of fitted functions. For

example, the first-order derivative of a fitted monotone smoothing function [Ramsay

and Silverman, 2005] measuring children’s height over a given period represents the

estimated growth velocity, and the second-order derivative is the estimated growth

acceleration, etc. This dissertation focuses on the curves over a time domain, which

are usually fitted by some basis function expansion. Throughout this paper, we use

the B-spline basis [De Boor, 2001].

In some data sets, curves present similar patterns within subgroups, which re-

quires a cluster analysis assigning observations that share similar characteristics into

the same subgroup. After identifying the cluster structure, follow-up analysis usu-

ally focuses on two major variations among curves within a cluster: amplitude and

phase variations [Ramsay and Silverman, 2005]. The amplitude variations character-

ize variations along the vertical direction over time, which consist of measurement

error and departures from the underlying mean function. The phase variations are

caused by the misalignment between the unobserved biological/mechanical clock and

the chronological clock. A classic example is the Berkeley growth data [Tuddenham

and Snyder, 1953]. The growth accelerations among girls and boys display similar

1
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patterns, however, the growth peaks and valleys happen at very different ages. In the

presence of phase variation, even a simple summary, such as the mean curve, may

fail to capture the pattern of any individual curve. Thus, it is desirable to remove

the phase variations for better statistical analysis. The process of eliminating phase

variation is called registration in the literature [Ramsay and Silverman, 2005]. The

phase variation is usually modeled by a warping function h(·) [Ramsay and Silverman,

2005], which is a non-decreasing continuous function defined on the time domain T

satisfying the endpoint conditions h(a) = a, and h(b) = b, where a and b are two

endpoints of the time domain. Figure 1.1 shows eight warping functions, while the

bold dashed line is the 45◦ reference line representing an identity warp.
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Figure 1.1 Examples of warping functions

In a clustering problem, the cluster structure is blurred by the effect of the time

distortions, which should be eliminated for the purpose of clustering. However, when

the phase variation in a curve depends on which cluster the curve belongs to, it is not

feasible to estimate the warping functions without knowing the cluster memberships.

2
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On the other hand, it is challenging to obtain a high clustering accuracy due to phase

variation. The main focus of this dissertation is clustering functional observations

in the presence of phase variation. In Section 2, clustering methods, registration

methods and recent methods for joint clustering and registration are reviewed. In

Chapter 3, we propose a Bayesian method for simultaneous registration and cluster-

ing of functional observations. In Chapter 4, we propose a distance-based method

that takes advantage of our fast registration procedure in the previous chapter. In

Chapter 5, we obtain a faster approach to inference for the model proposed in Chapter

3 by applying the variational Bayes method.

3
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Chapter 2

Literature Review

Clustering functional observations involves grouping curves that share similar charac-

teristics. Classic multivariate clustering methods, including the hierarchical agglom-

erative method, K-means method, and model-based method [Everitt et al., 2011]

could be applied to the functional data by viewing each observation as a vector. The

hierarchical agglomerative method starts with each observation belonging to its own

cluster. At each step, two clusters with the closest distance are merged together,

and the total number of clusters is reduced by 1. We stop the algorithm once the

desired number of clusters is achieved. Typical distance measures between two clus-

ters are single linkage, complete linkage, and average linkage. The K-means method

starts with K centroids, which are the multidimensional means of the K clusters.

Each observation is assigned to the cluster that has the shortest distance between its

centroid and that observation. Then, the centroids are updated based on the cur-

rent clusters. The algorithm iterates between last two steps until some convergence

criterion is satisfied. Fraley and Raftery [2002] popularized model-based clustering.

They assumed observations are sampled from a mixture of normal distributions, i.e.,

xi ∼
∑k
j=1 wjNp(µj,Σj). This model is also called a finite mixture model. The

parameter estimation is carried out via the EM algorithm. However, these meth-

ods designed for multivariate data fail to capture the time dependency of the mean

functions, which may result in poor clustering accuracy for functional data.

Recently, several methods have been developed for clustering functional data.

Luan and Li [2003] used mixed-effect models for time-course gene expression. For the

4
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i-th gene expression measured at time tij, the proposed model is

Yi(tij) =
p∑
l=1

β
(c)
l B̄l(tij) +

q∑
l=1

γilBl(tij) + εij,

where the first term models the mean curve of cluster c, and the second term is the

random effect. Both fixed and random effects are fitted via B-spline basis function

expressions. The parameter estimation and the posterior cluster probabilities are

calculated via the EM algorithm. This mixed-effect model is a special case of the

model proposed by James and Sugar [2003]. They proposed a finite mixture model

of the form

Yi = Si(λ0 + ΛαZi + γi) + εi,

where the error term εi ∼ N(0, R), and random effect γi ∼ N(0,Γ). The parameter

estimation is obtained via the EM algorithm.

Motivated by an application in epidemiology, Dunson and Herring [2006] proposed

a semiparametric model using a finite Dirichlet process mixture of the form

yi = ηi + εi,

where η ∼ G(·) = ∑k
h=1 phδΘh(·), and the mean trajectory Θh ∼ GP (Cκh) follows

a Gaussian process prior. The parameter estimates are obtained via Markov chain

Monte Carlo (MCMC).

As an important preprocessing step, registration eliminates the phase variation.

A simple and intuitive way of registering data is shift registration [Ramsay and Sil-

verman, 2005]. Assuming that each sample function xi is defined beyond the interval

[T1, T2] on which the sample functions are taken, we shift variable t horizontally, i.e.,

the registration is of the form

x∗i (t) = xi(t+ δi),

where δi is a parameter that aligns function xi.

5
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The shifting parameter δi is estimated by an iterative method called the Procrustes

method. We define a global measurement of the goodness of registration by the sum

of squared error as

REGSSE =
N∑
i=1

∫
T

[xi(t+ δi)− µ̂(t)]2ds,

where T is the interval of registration, and µ̂(t) is the overall mean function which

can be evaluated by a smoothing method, possibly including a roughness penalty.

The iterative procedure is described as follows. Starting with the original data, in

each step, we calculate δi to minimize REGSSE by the Newton-Raphson algorithm and

update µ̂(t), xi(t+ δi), and REGSSE, repeating the procedure until some convergence

criterion is satisfied.

Ramsay and Li [1998] proposed a warping function of the form

h(t) = C1{D−1 exp(D−1w)}(t),

where D−1 exp is the monotonization operator, which guarantees the monotonicity

of the warping function. The function w is formed by B-spline basis functions for

flexibility. The parameter estimation is carried out via minimizing the penalized

squared error criterion

Fλ(y, x|h) =
∫
||y(t)− x[h(t)]||2 dt+ λ

∫
w2(t) dt.

The magnitude of parameter λ determines the smoothness of the warping function.

Ramsay and Silverman [2005] developed a similar model, in which the warping

function is

h(t) = C0 + C1

∫ t

0
expW (u) du,

where W is an unconstrained function, which can be expressed by a set of a B-

spline functions for example. The monotonicity is achieved by an integral over an

exponential function. To estimate W , a continuous fitting criterion is used. They

6
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define

T(h) =


∫
{x0(t)}2 dt

∫
x0(t)x[h(t)] dt∫

x0(t)x[h(t)] dt
∫
{x[h(t)]}2 dt

 .
Using principal component analysis, the registration is complete if the smaller eigen-

value, which measures departures from unidimensionality, is 0. A roughness penalty

term is used in conjunction with the minimal eigenvalue criterion to ensure the

smoothness.

Recently, Cheng et al. [2015] developed a Bayesian method for 1D curve and 2D

image registration. The key idea is to model the warping functions by a discrete

approximation generated from the family of Dirichlet distributions. Let (γ1, . . . , γM)

be a vector of realizations from a Dirichlet distribution; this vector satisfies γi > 0 for

i = 1, . . . ,M and ∑i γ = 1. It follows that the linear interpolation of the cumulative

sum is strictly monotone increasing in [0, 1]. Without loss of generality, we can map

the original time domain into [0, 1], and register the curves on [0, 1]. The advantage

of such a discrete approximation is its simple formulation and great flexibility.

Other recently developed Bayesian registration methods include Earls and Hooker

[2015]. They model both the mean curves and warping functions by Gaussian pro-

cesses. The warping function hi(t) = ti +
∫ t
t1
ewi(s), where wi(t) follows a Gaussian

process distribution. The proposed model is

Xi(hi(t))|z0i, z1i, f(t) ∼ GP (z0i + z1if(t), γ−1
R Σ(s, t)) s, t ∈ T .

The details of how to model the covariance matrix are given in Earls and Hooker

[2014]. They also proposed fast inference via a modified variational Bayes method

[Ormerod and Wand, 2010], which they refer to as adapted variational Bayes. When

the prior of wi is non-conjugate, they directly maximize the log-likelihood function

with respect to the variables determining the warping function to obtain the optimal

value in the current iteration without deriving the approximated distribution.

7
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Recently, several papers have tackled the problem of joint clustering and registra-

tion. Liu and Yang [2009] proposed the SACK model, which is capable of clustering

functional data when a simple time translation is presented. The proposed model is

yij = di + ∑L
l=1 βlBl(bi + tij) + εij, where di is the amplitude variable and bi is the

time translation variable. They translate the shift in the time domain into variation

in the measurement space by a first-order Taylor expansion on the B-spline basis

functions. The transformed model is yij = di+
∑L
l=1 βl(Bl(tij)+ biB

′
l(tij))+ εij, which

is a mixture model. The conditional cluster probabilities are calculated via the EM

algorithm. They use pBIC, a modified BIC, for model selection, since the regularity

conditions of BIC do not hold for the mixture model.

Also assuming a simple time translation, Sangalli et al. [2010] proposed an it-

erative method based on a dissimilarity measure called k-mean alignment, which

iterates among a template identification step, an alignment and cluster step, and a

normalization step until convergence.

To handle more realistic scenarios under arbitrary time warpings, Tang and Müller

[2009] propose a method based on pairwise warping. For observation i and k, the

pairwise warping function is a composition of two individual warping functions defined

as gik(t) = hi(h−1
k (t)). The pairwise warping function is estimated via minimizing

Cλ(Yi, Yk, g) = E
{∫
T

(Yi(g(t))− Yk(t))2 + λ(g(t)− t)2 dt
}
,

which essentially minimizes the L2 distance between unaligned observation k and

time-transformed observation i with curve k as its template. To avoid extreme time

distortion and solve the identifiability issue, the warping function is estimated by

ĥ−1
i = 1∑n

i=1 1{dpw(i,k)<d0}

n∑
i=1

g̃ik(t)1{dpw(i,k)<d0},

which is based on the assumption that E(hi(t)) = t and the L2 distance between

curves from two clusters is relatively large. Note that d0 is a threshold that determines

the pairs used in estimating hi(·). However, this method assumes the mean curves in

8
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different clusters are well separated vertically to some degree, a condition potentially

too strong for some applications.

Zhang and Telesca [2014] proposed a model with flexible warping functions of the

form

yi(t) = ci + aimi{µi(t,φi),θi}+ εi(t),

where µi(·) is the curve-specific warping function modeled by a B-spline basis ex-

pansion with restricted coefficients to guarantee the monotonicity. The parameter ci

accounts for vertical shift, and ai serves as a stretching/shrinking factor. They model

the B-spline coefficients of the i-th mean curve θi by a Dirichlet process mixture.

Consequently, the number of clusters K is determined implicitly.

9
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Chapter 3

A Bayesian Method for Simultaneous

Registration and Clustering of Functional

Observations

We develop a Bayesian method that simultaneously registers and clusters functional

data of interest. Unlike other existing methods, which often assume a simple trans-

lation in the time domain, our method uses a discrete approximation generated from

the family of Dirichlet distributions to allow warping functions of great flexibility.

Under this Bayesian framework, a MCMC algorithm is proposed for posterior sam-

pling. We demonstrate this method via simulation studies and applications to growth

curve data and cell cycle regulated yeast genes.

3.1 Model Assumption

In a functional dataset, we assume that there are N objects, on which we take K

measurements over time. Given a certain number of repeated measurements, we may

model the response trajectory as a function of time using some basis (such as splines)

in the context of functional data analysis.

We assume that each observation is composed of a signal function and random

error terms, that is,

Y = af(t) + ε,

where a ∈ R+ is a stretching/shrinking factor [Zhang and Telesca, 2014], f(t) is the

set of underlying responses at the vector of time points t, and ε is an i.i.d. N(0, σ2)

10
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error vector.

When our observed data must be aligned, we model the effect of the warping

function associated with Y as Y = f [h(t)] + ε, where h is the underlying warping

function, and therefore,

Y|β, γ, σ2, a ∼ MVN(af [h(t)], σ2I).

For the purpose of clustering, we introduce notation for different groups. For a fixed

number of clusters C, we use the vector zi = (zi1, zi2, . . . , ziC) to denote the cluster

membership for the i-th observation. Note that only one element of zi equals 1

and the rest all equal 0. Throughout this paper, we will use B-splines with q basis

functions to model the signal curve. It follows that for a K-dimensional observation

Y, we have f(t) ≈ φ(t)β, where φ is a K × q matrix of coefficients of the B-spline

basis evaluated at each time point. To be more specific,

φ(t) =



φ1(t1) φ2(t1) . . . φq(t1)

φ1(t2) φ2(t2) . . . φq(t2)

. . . . . . . . . . . .

φ1(tK) φ2(tK) . . . φq(tK)


,

where φi(·) denotes the i-th B-spline basis function, and β is a vector of B-spline

coefficients. We use the same basis functions and assume the same variance σ2 across

all groups. Let βi denote the spline coefficients for the i-th group, i = 1, 2, . . . , C.

The discretized mean curve for the i-th cluster is represented as µi ≈ φ[γ(t)]βi,

where γ(·) is the discrete approximation of the corresponding warping function h,

which will be discussed in the next section.

11
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3.2 Likelihood and Bayesian Analysis

Prior Distributions on Parameters

To estimate the warping function hi for the i-th observation, a discrete approximation

generated by a Dirichlet distribution is utilized [Cheng et al., 2015]. Without loss of

generality, let us assume that the time domain T = [0, 1]. Any general time domain

[T1, T2] may be converted into [0, 1] by the transformation g(t) = (t− T1)/(T2 − T1).

Let γi1, γi2, . . . , γiM ∼ Dir(α), where α is a M -vector of positive parameters.

For the Dirichlet distribution, we have ∑j γij = 1, which suggests that the linear

interpolation of the cumulative sum over γij can serve as a discrete approximation of

the continuous warping hi. The parameter M controls the smoothness of the approx-

imation. A large M results in a smoother approximation, but more computational

burden.

The hyperparameter α can be chosen to affect the “concentration” of the warping

functions relative to the 45◦ reference line, which corresponds to no warping. Small

values in α allow more variability in each step of the approximation, and vice versa.

Figure 3.1 shows two sets of discrete warping functions, each with 20 jumps, generated

from Dir(0.8, 0.8, . . . , 0.8), and Dir(5, 5, . . . , 5), respectively.

If observation i is assigned to cluster j, then the cluster membership indicator zi

is a vector of size C containing a 1 in the j-th position and 0 elsewhere. We model

zi with a multinomial distribution, i.e., zi ∼ Multi (1, (p1, . . . , pC)), where p1, . . . , pC

are the membership probabilities satisfying ∑j pj = 1. We choose a conjugate Dirich-

let prior for those probabilities; i.e., p1, . . . , pC ∼ Dir(η), where η is a vector of

hyperparameters.

For the i-th cluster, we assume that βi ∼ MVN(β0i,Γ). It will be seen later

that the full conditional distribution of βi is still multivariate normal. We model the

precision parameter τ = 1/σ2 with a (conjugate) gamma prior, i.e., τ ∼ Gamma(κ, θ).

12
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Figure 3.1 Left: Warping functions from Dir(0.8, 0.8, . . . , 0.8). Right: Warping
functions from Dir(5, 5, . . . , 5).

For functional observations, one possible source of amplitude variation is com-

posed of vertical shifts among observations in the same cluster. The left panel in

Figure 3.2 shows a set of simulated observations from the same cluster with phase

variations; the right panel shows the same observations with additional vertical shifts

following Unif (−0.5, 0.5). The bold curve is the true signal function generating the

observations.

Our prior model assumes the vertical shift Si for the i-th observation isUnif (−φ, φ)

for some positive φ. On the stretching/shrinking factors ai, we place independent

N(1, σ2
a) priors, i = 1, 2, . . . , N.

Likelihood and Posterior of the Model

Under the preceding model assumptions, for a vector of measurements taken on the

same functional observation, we have

Y = aφ[γ(t)]β + S + ε,
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Figure 3.2 Left: Simulated data with phase variations. Right: Simulated data with
additional vertical shifts generated from Unif (−0.5, 0.5).

where S = S ⊗ 1 (⊗ is the Kronecker product) is a vector of size K containing the

same vertical shifts. Hence, the distribution of the i-th observation yi belonging to a

specific cluster in the presence of phase variation is given by

Yi|β, γi, zi, τ, s ∼ MVN
(
aiφ[γi(t)]

C∏
c=1
βzicc + si, τ−1I

)
.

With the above prior distributions on the parameters, the joint distribution of the

data and parameters is

14



www.manaraa.com

L(β1, . . . ,βC , γ1, . . . , γN , z1, . . . ,zN , p1, . . . , pC , τ, s1, . . . , sN , a1, . . . , aN ,

y1, . . . ,yN)

=
N∏
i=1
P(yi|β, zi, γi, p1, . . . , pC , τ, s1, . . . , sN , a1, . . . , aN)

C∏
c=1
P(βc|βc0,Γ)

N∏
i=1
P(γi|α)

N∏
i=1
P(zi|p1, . . . , pC)P(p1, . . . , pC |η)P(τ |κ, θ)

N∏
i=1
P(si|φ)

N∏
i=1
P(ai|σ2

a)

∝
N∏
i=1

τK/2 exp

−1
2τ
[
yi − aiφ[γi(t)]

C∏
c=1
βzicc − si

]′ [
yi − aiφ[γi(t)]

C∏
c=1
βzicc − si

]
C∏
c=1

exp
{
−1

2(βc − βc0)′Γ−1(βc − βc0)
} N∏
i=1

M∏
m=1

γαm−1
im

N∏
i=1

C∏
c=1

pzicc

C∏
c=1

pηc−1
c

τκ+1 exp{−τθ}
N∏
i=1

1{−φ<si<φ}
N∏
c=1

exp
{
−1

2(ai − 1)2
}

∝ τKN/2 exp

−1
2τ

N∑
i=1

∥∥∥∥∥yi − aiφ[γi(t)]
C∏
c=1
βzicc − si

∥∥∥∥∥
2

C∏
c=1

exp
{
−1

2(βc − βc0)′Γ−1(βc − βc0)
}

N∏
i=1

M∏
m=1

γαm−1
im

C∏
c=1

p
∑N

i=1 zic+ηc−1
c τκ−1 exp{−τθ}

N∏
i=1

1{−φ<si<φ} exp
{
−1

2

N∑
i=1

(ai − 1)2
}
.

This joint distribution will be used to obtain the relevant full conditional distri-

butions for the MCMC algorithm.

Due to the complexity of the proposed model, an analytical posterior derivation is

intractable, so our inference is based on MCMC sampling of the posterior distribution.

At iteration t, the MCMC algorithm is as follows:

• Gibbs Sampling for Cluster Membership zi

The full conditional distribution of zi is

P(zi|rest) ∝ exp

−1
2τ

[t−1]
∥∥∥∥∥yi − a[t−1]

i φ[γ[t−1]
i (t)]

C∏
c=1

(β[t−1]
c )zic − s[t−1]

i

∥∥∥∥∥
2

C∏
c=1

(p[t−1]
c )zic .
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The cluster membership indicator vector is discrete and follows a multinomial

distribution. The probability of belonging to the j-th cluster is proportional to

exp
{
−1

2τ
[t−1]

∥∥∥yi − a[t−1]
i φ[γ[t−1]

i (t)] β[t−1]
j − s[t−1]

i

∥∥∥2
}
p

[t−1]
j .

Let us denote the above quantity by qj. We have

zi|rest ∼ multi

(
q1∑
j qj

, . . . ,
qC∑
j qj

)
.

• Gibbs Sampling for Cluster Probabilities p1, . . . , pC

After updating the cluster membership, the full conditional distribution of the

probabilities is

P(p1, . . . , pC |rest) ∝
N∏
i=1

C∏
c=1

pz
[t]
ic
c

C∏
c=1

pηc−1
c

∝
C∏
c=1

p
∑N

i=1 z
[t]
ic +ηc−1

c .

It follows that

p1, . . . , pC |rest ∼ Dir

(
N∑
i=1

z
[t]
i1 + η1, . . . ,

N∑
i=1

z
[t]
iC + ηC

)
.

• Metropolis-Hastings Algorithm for Sampling Warping γi

We update γi1, . . . , γiM−1. The two endpoints satisfy the conditions γi0 =

0, and γiM = 1 − ∑M−1
j=1 γij, because of the constraints of the warping func-

tion, and hence are not involved in the updating procedure. After updating the

zi, we propose a value of γ∗ij from a truncated normal with mean γ
[t−1]
ij and

variance σ2
γ on [0, γiM + γij] to guarantee a positive γ∗ij and γ∗iM . We accept the

proposed value with probability
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λ = min

1,
exp

{
−1

2τ
[t−1]

∥∥∥∥yi − a[t−1]
i φ[γ∗(j)i (t)]∏C

c=1 β
[t−1]z[t]

ic
c − s[t−1]

i

∥∥∥∥2
}

exp
{
−1

2τ
[t−1]

∥∥∥∥yi − a[t−1]
i φ[γ(j−1)

i (t)]∏C
c=1 β

[t−1]z[t]
ic

c − s[t−1]
i

∥∥∥∥2
}×

(γ∗ij)αj−1(γ∗iM)αM−1
[
Φ
(
r

[t]
ij −γ

∗
ij

σγ

)
− Φ

(
−γ∗ij
σγ

)]

(γ[t−1]
ij )αj−1(γ[t−1]

iM )αM−1

[
Φ
(
r

[t]
ij −γ

[t−1]
ij

σγ

)
− Φ

(
−γ[t−1]

ij

σγ

)]
 ,

where γ(j)
i is the warping function with the jump updated through the j-th

element, and Φ is the standard normal CDF.

• Gibbs Sampling for Spline Coefficients βk
After updating the γi’s and zi’s, we use a superscript as the updated member-

ship indicator. For example, y(k)
i signifies that we classify observation yi into

group k. Furthermore, let n[t]
k denote the size of group k at the current iteration.

The full conditional of βk is given by

P(βk|rest) ∝ exp

−1
2τ

[t−1]
n

[t]
k∑
l=1

∥∥∥y(k)
l − a

[t−1]
i φ[γ[t]

l (t)]βk − s[t−1]
l

∥∥∥2


exp

{
−1

2(βk − β0k)′Γ−1(βk − β0k)
}

∝ exp


−1

2β
′
k

τ [t−1]
n

[t]
k∑
l=1

[(
a

[t−1]
l

)2
φ′[γ[t]

l (t)]φ[γ[t]
l (t)]

]
+ Γ−1


︸ ︷︷ ︸

call it Ak

βk−

β′k

τ [t−1]
n

[t]
k∑
l=1

a
[t−1]
l φ′[γ[t]

l (t)](y(k)
l − s[t−1]

l ) + Γ−1β0k


︸ ︷︷ ︸

call it ck


∝ exp

{
−1

2(βk −A−1
k ck)′Ak(βk −A−1

k ck)
}
.

Therefore,

βk|rest ∼ MVN(A−1
k ck,A−1

k ).
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• Gibbs Sampling for Precision τ

After updating the γi’s, zi, and βk’s, the full conditional distribution of τ is

given by

P(τ |rest)

∝ τKN/2 exp

−1
2τ

N∑
i=1

∥∥∥∥∥yi −
C∏
c=1

[
a

[t−1]
i φ(γ[t]

i (t))β[t]
c

]z[t]
ic − s[t−1]

i

∥∥∥∥∥
2 τκ−1

exp {−τθ}

∝ τ
KN

2 +κ−1 exp

−τ
1

2

N∑
i=1

∥∥∥∥∥yi −
C∏
c=1

[
a

[t−1]
i φ(γ[t]

i (t))β[t]
c

]z[t]
ic − s[t−1]

i

∥∥∥∥∥
2

+ θ

 .
It follows that

τ |rest ∼ Gamma

KN
2 + κ,

1
2

N∑
i=1

∥∥∥∥∥yi −
C∏
c=1

[
a

[t−1]
i φ(γ[t]

i (t))β[t]
c

]z[t]
ic − s[t−1]

i

∥∥∥∥∥
2

+ θ

 .
• Gibbs Sampling for Vertical Shift Si

After updating the γi’s, zi, βk’s, and τ , the full conditional distribution of Si

is given by

P(si|rest)

∝ exp

−1
2τ

[t]
∥∥∥∥∥yi −

C∏
c=1

[
a

[t−1]
i φ(γ[t]

i (t))β[t]
c

]z[t]
ic − si

∥∥∥∥∥
21{−φ<si<φ}.

To simplify the notation, let us define dl as the l-th element of the vector

yi −
∏C
c=1

[
a

[t−1]
i φ(γ[t]

i (t))β[t]
c

]z[t]
ic . The posterior then is

P(si|rest) ∝ exp
{
−1

2τ
[t]

K∑
l=1

(si − dl)2
}
1{−φ<si<φ}

∝ exp
{
−1

2τ
[t]

K∑
l=1

(s2
i − 2dlsi)

}
1{−φ<si<φ}

∝ exp
{
−1

2τ
[t]K(si −

K∑
l=1

dl/K)2
}
1{−φ<si<φ}
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The normal kernel indicates that the posterior distribution of the vertical shift

Si is a truncated normal with mean ∑K
l=1 dl/K, and variance 1/(τ [t]K), i.e.,

Si|rest ∼ N

(∑K
l=1 dl
K

,
1

τ [t]K

)
1{−φ<si<φ}.

Note that for a point estimate of these shifts, we simply require ∑i si = 0 to

ensure identifiability.

• Gibbs Sampling for Stretching/Shrinking Factor ai

After updating the γi’s, zi, βk’s, τ , and si’s, the full conditional distribution of

ai is given by

P(ai| rest)

∝ exp

−1
2τ

[t]
∥∥∥∥∥yi −

C∏
c=1

[
aiφ(γ[t]

i (t))β[t]
c

]z[t]
ic − s[t]

i

∥∥∥∥∥
2 exp

{
− 1

2σ2
a

(ai − 1)2
}
.

For economy of notation, we denote the l-th element of ∏C
c=1[φ(γ[t]

i (t))β[t]
c ]z

[t]
ic

and yi by µ
[t]
il and yil, respectively. The posterior becomes

P(ai| rest)

∝ exp
{
−1

2τ
[t]
[
K∑
l=1

a2
i (µ

[t]
il )2 −

K∑
l=1

2aiµ[t]
il (yil − s

[t]
i )
]}

exp
{
− 1

2σ2
a

a2
i + 1

σ2
a

ai

}

∝ exp
{
−1

2

[
1
σ2
a

+ τ [t]
K∑
l=1

(µ[t]
il )2

]
a2
i +

[
τ [t]

K∑
l=1

µ
[t]
il (yil − s

[t]
i ) + 1

σ2
a

]
ai

}
.

By completing the square, we have

ai| rest ∼ N

τ [t]∑K
l=1 µ

[t]
il (yil − s

[t]
i ) + 1/σ2

a

1/σ2
a + τ [t]∑K

l=1(µ[t]
il )2

,
1

1/σ2
a + τ [t]∑K

l=1(µ[t]
il )2

 .
From experimentation using various simulated data, we note two concerns: (1)

The posterior cluster memberships converge quickly usually after several hundred

iterations, and barely change afterwards; (2) the “converged” cluster memberships

depend on the initial values of the Markov chain. These phenomena are partially

due to the fact that the misclassified observations affect the posterior sampling of
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coefficients β, and cluster memberships are in turn influenced by those coefficients in

the next iteration.

We need to “force” the individual curves to accept new group membership from

time to time to avoid the vicious circle described above. We adjust the sampling

algorithm in the following way: In the burn-in stage, every I iterations, p% of the

curves in each group switch clusters at random (for practical purposes, we recommend

I = 10 to 100, p = 3 to 15). We make these switches only in the burn-in stage, and

thus we use an ordinary MCMC algorithm afterward with the initial values obtained

from the burn-in stage. This switch reduces the influence of initial values. Should

the switch result in a poorer clustering, we note based on experimentation that the

chain can adjust itself and is likely to recover individual classifications of the previous

partitions that were correct.

Our proposed method can cluster observations under nonlinear time distortion

and vertical shifting and does not require or estimate any template for the purpose

of registration.

3.3 Choosing the Number of Clusters

Determining the number of clusters is a common problem in cluster analysis. A

wide variety of solutions have been proposed. The “elbow criterion” examines the

percentage of variation explained as a function of the number of clusters, with the

number of clusters chosen where when the plot levels off. The variance ratio crite-

rion [Caliński and Harabasz, 1974] chooses the number of clusters which maximizes

the ratio of the between-cluster and the within-cluster sum-of-squares. For model-

based clustering methods, information criteria such as AIC [Akaike, 1974] and BIC

[Schwarz et al., 1978] are frequently employed as a measure of clustering quality.

These information-theoretic approaches are based essentially on the log-likelihood

and penalize the number of parameters in the model.
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For our method, it is simple to calculate the log-likelihood for a given cluster

number C∗ at each iteration. Recall that

Yi|β, γi, zi, τ, si, ai ∼ MVN
(
aiφ[γi(t)]

C∏
c=1
βzicc + si, τ−1I

)
.

The likelihood is given by

L(y1, . . . ,yN |β1, . . . ,βC∗ , γ1, . . . , γN , z1, . . . ,zN , s1, . . . , sN , a1, . . . , aN)

=
C∗∏
i=1

ni∏
j=1

(2π)K/2|τ−1I|−1/2 exp
{
−1/2τ ||yj − ajφ[γj(t)]

C∏
c=1
βzjcc − sj)||2

}

= (2π)−K/2
C∗∏
i=1

ni∏
j=1

τK/2 exp
{
−1/2τ ||yj − ajφ[γj(t)]

C∏
c=1
βzjcc − sj)||2

}
.

The log-likelihood follows as

logL(y1, . . . ,yN |β1, . . . ,βC∗ , γ1, . . . , γN , z1, . . . ,zN , s1, . . . , sN , a1, . . . , aN)

= constant + KN

2 τ − 1
2τ

C∗∑
i=1

ni∑
j=1
||yj − ajφ[γj(t)]

C∏
c=1
βzjcc − sj)||2.

To be conservative, we start our algorithm with an excessive initial number of clusters

(at least 1/4 of the total number of observations) and allow the number of non-empty

clusters to decrease across iterations. Such a decrease occurs when at iteration t,

based on the last sampled parameter values, no objects are assigned to some cluster

in the Metropolis-Hastings cluster membership step.

We apply the following procedure to select the number of clusters during the

initial (burn-in) stage of the algorithm, in conjunction with the cluster membership-

switching procedure described at the end of Section 4. After this initial stage, we fix

the number of clusters and proceed with ordinary MCMC, using only the Gibbs step

to assign cluster membership to each observation.

When the total number of non-empty clusters decreases from C∗ to C∗ − 1, we

calculate the average log-likelihood for the most recent block of iterations with C∗

clusters (denoted by avg logLC∗) and compare it to the average log-likelihood for
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the most recent block of iterations with C∗ + 1 clusters (denoted by avg logLC∗+1).

If avg logLC∗ > avg logLC∗+1, we accept the decrease. Otherwise, we reset the

cluster membership to the first iteration in the most recent block of iterations where

the number of clusters is C∗ + 1. The pseudo code is given in Appendix A.

If the number of clusters remains constant for a long period of time, it either

achieves the optimal number of clusters in terms of average log-likelihood, or the

algorithm is trapped at the current number of clusters. Let MC∗ be number of

consecutive iterations that the Markov chain stays at the current number of clusters.

If MC∗ is larger than some predetermined threshold, we compare the average log-

likelihood of the current block of iterations where C = C∗ to the average log-likelihood

of the most recent block of iterations with C = C∗+1. If the average log-likelihood is

smaller for the current C∗, we reset C = C∗+ 1, and reset the cluster membership to

the first iteration in the most recent block of iterations where the number of clusters

is C∗ + 1. The pseudo code is given in Appendix A.

3.4 Simulation Study

To illustrate our algorithm’s ability to estimate warping functions and cluster struc-

ture, we generate a simulated dataset and apply our method to it.

On the domain T = [0, 1], we choose 6 B-spline basis functions of order 5 using

an equally-spaced knots sequence. We specify 5 clusters, and thus generate 5 sets

of B-spline coefficients of size 6 distributed as MVN(0, 2 × I), which are shown in

Table 3.1. We assign 10, 12, 11, 10, and 13 observations (56 total observations) to

each cluster, respectively, and generate 56 warping functions with 20 steps distributed

as Dir(α = (1, . . . , 1)). We assume that 30 equally spaced measurements on T are

taken from each curve. The simulated warping functions are applied to the clock

time and the underlying process times are obtained for each observation. For the i-th

observation, we evaluate the B-spline function at its corresponding process times. A
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set of stretching/shrinking factors of size 56 is generated as independent N(1, 0.052)

and multiplied to the mean values of the corresponding observations. Finally, we add

white noise with σ2 = 0.01 to each observation at each time point. A vertical shift

generated from Unif (−1, 1) is added to each observation. A plot of the simulated

dataset is shown in the top left panel of Figure 3.3.

Table 3.1 5 sets of coefficients for the B-spline
basis functions

β1 β2 β3 β4 β5 β6
coef 1 2.38 0.46 -2.18 0.39 -2.56 1.81
coef 2 0.38 -2.89 -0.65 3.24 -1.38 4.08
coef 3 0.94 2.50 4.06 -2.79 0.59 -1.18
coef 4 -0.48 1.35 -4.88 2.48 -0.65 0.31
coef 5 -1.12 -0.00 0.83 2.62 4.48 0.70

To analyze the simulated data, we use a B-spline representation with 9 basis

functions of order 6 with equally spaced knots. Our simulation experimentation

indicates the clustering results are insensitive to the choice of spline basis having

reasonable number and order, which is also noted by Liu and Yang [2009] and James

and Sugar [2003]. The means β0 of the B-spline are taken to be 0, and we assume

those coefficients are independent with variance 1, i.e., β|β0,Γ ∼ N(0, I). Based on

Appendix A, the posterior samples for those coefficients are dominated by the data

unless we have very strong prior knowledge. For the hyperparameters, we choose

κ = 100, θ = 1 for the precision, φ = 1 for the vertical shifts, and α = 1 for the

warping functions. Following our algorithm for choosing the number of clusters, we

start with C = 30 clusters having equal prior cluster probabilities.

We perform 20000 iterations, with the first 10000 discarded as burn-in. There

are 5859 iterations in all whose number of non-empty clusters is 5, indicating that

C = 5 is the most appropriate choice for this simulated dataset. To find a good set

of starting values, we run another chain with C = 5 for 20000 iterations, with the

first 10000 discarded as burn-in. We switch 15% of the observations in each cluster
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every 20 iterations. Finally, a regular MCMC is performed using the initial values

obtained from the last step. The correct classification rate (cRate) [Liu and Yang,

2009], defined as the maximum proportion of agreements between estimated and true

cluster memberships (among all labeling permutations), is a measure of clustering

quality. The cRate of our simulation study is 100%. We compare the result from

joint registration and clustering to other existing methods using these simulated data.

Of methods involving only clustering, the K-means method [Hothorn and Everitt,

2014], Ward’s hierarchical agglomerative method [Hothorn and Everitt, 2014], and a

model-based clustering method [Fraley and Raftery, 2002] produce a cRate of 83.93%,

85.71%, and 89.28%, respectively. To compare our result to a stepwise registration

and clustering approach, we apply the registration method of Ramsay and Silverman

[Ramsay and Silverman, 2005] implemented with the register.fd function in the

fda package in R [Ramsay et al., 2013] to smooth and register the curves. Applied to

the resulting registered curves, the cRate of the above three methods are 62.50%,75%,

and 82.14%, respectively.

The lower left panel of Figure 3.3 displays the true signal curves (gray) and our

posterior estimated signal curves (black). We use means of the posterior samples

having 5 clusters as the point estimates of the B-spline coefficients. The estimated

signal curves basically capture the characteristics of the true signal curve. The lower

right panel of Figure 3.3 shows the estimated warping functions.

Notice that in Figure 3.3, there appears to be some phase variation that causes

a slight discrepancy between the estimated mean curves (black) and the true mean

curves (gray), which is due to a type of identifiability issue. The observed curves

are the composition of the underlying mean curves, the subject-specific stretch-

ing/shrinking factors, and the subject-specific warping functions. Consequently, a

slightly different set of mean curves, along with slightly different warping functions,

could produce identical observed curves. Figure 3.4 displays three sets of estimated
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and true warping functions selected from three clusters. The discrepancies we see

between the true and estimated warping functions are what produce the phase varia-

tion in Figure 3.3(c). This issue is not closely related to clustering accuracy, however.

The warpings are designed to align the curves within their identified cluster, in order

to better measure the distances between curves in a cluster. Thus our clustering

accuracy should still be good despite the discrepancies in Figure 3.3(c).

To test the convergence of the chain, we use the Heidelberg-Welch stationarity

test [Heidelberger and Welch, 1981]. One advantage of this method is that it does

not require multiple chains with different initial values, since our chain starts with the

initial values determined by a preliminary run. For our simulation study, the sample

for τ passes the test; 85% of the spline coefficient samples pass the test; 85% of the

stretching/shrinking factor samples pass the test; 95% of the vertical shift samples

pass the test; 93% of the warping function jumps pass the test. Overall, the vast

majority of the posterior samples are considered to be drawn from their stationary

distributions.

The goals of our study are estimating cluster membership and the warping func-

tions associated with each observation. For a given observation, each step of the

discrete warping function is estimated via the mean posterior jump at that step. The

phase variation can be removed by applying the estimated warping function to the

clock time for each observation. For our simulated dataset, the curves with phase

variation removed are shown in the top right panel of Figure 3.3, from which we see

a clear cluster structure.

The user-chosen value ofM determines the degree of discretization of the warping

function. Our philosophy is to achieve a balance between a reasonable approximation

and affordable computational time. As a guide for the choice of M , we proposed the

criterion

ψM,α =
N∑
i=1

∫ 1

0
|γM,α
i (t)− t|dt
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Figure 3.3 (a) A set of 56 simulated observations with 5 clusters. (b) Simulated
data with phase variation removed, with superimposed posterior estimated mean
curves (solid black). (c) True mean curves (gray) and estimated mean curves
(black). (d) Estimated warping functions for all 5 clusters.

to measure the concentration of the warping functions (as a function of the dimension

M and concentration parameter α) around the 45◦ reference line. If we changeM , we

need to adjust α simultaneously so that the variabilities among the warping functions

remain roughly the same across different choices of M and α. We may obtain a

positive real K by specifying a base Dirichlet distribution with M = M0 and α = α0,
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Figure 3.4 Solid curves represent
estimated warpings, and dashed curves
represents true warpings. Curves with the
same color are warpings for the same
observation.

and then letting K = αM .

To inform the choice of M , we run 5 preliminary chains with 5000 iterations on

our simulated data. We hold all parameters and hyperparameters constant except M

and α, which we vary. We choose M = 20, α = 1 as the base distribution and thus

K = 20. We examined the cases of M = 5, 10, 20, 30, 40, and 50. Figure 3.5 shows

a scatter plot of ψ against M . A value of M around the “elbow” of this plot should

be sufficiently large to represent well the true nature of the distribution of warpings.

We see that values of M ≥ 10 are acceptable, since the elbow of Figure 3.5 is at

M = 10. We still prefer using M = 20 due to more precise approximation and a still

reasonable computing time. Note that the classification rate (cRate) for M = 5 is

only 68%, while all other cases have cRate around 95% even for such a preliminary

run.

We conduct a sensitivity analysis by examining the specifications of several hy-
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Figure 3.5 ψ values for different choices of
M .

perparameters. We investigate the effect of various choices of α, φ, and σ2
a. We vary

the hyperparameters one at a time, separately multiplying each by 10, then by 0.1.

The original values for α, φ, and σ2
a are 1, 1, and 0.052, respectively.

Table 3.2 shows the cRate for different altered choices of hyperparameters. The

alteration of α only results in 1 and 3 incorrect curves, respectively. Using a large shift

parameter φ = 10 misclassifies 3 curves, while the small shift misclassifies 5 curves.

This makes sense since the conditional posterior distribution of φ is a truncated

normal bounded at −φ and φ. The small choice of σ2
a results in a much better

cRate.

Based on our simulation study, our method seems to be insensitive to the specifi-

cation of α. One exception is for data like the Berkeley accelerations that we present

in Section 6, for which all the curves are similar and the phase variation contributes

significantly to the cluster structure. In such a case, α must be chosen with caution.

We would recommend choosing φ fairly large rather than small, since a small φ may

be too restrictive to sample a proper shift. Finally, we would recommend choosing
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σ2
a relatively small when uncertain.

Table 3.2 Sensitivity analysis
for simulated data

Parameter Value cRate
α1 0.1 94.64%
α2 10 98.21%
φ1 0.1 91.07%
φ2 10 94.64%
σ2
a1 0.025 87.50%
σ2
a2 0.00025 100%

We perform another simulation study based on the previous setup but with only

10 evenly spaced measurement points. The cRate is 100%, which suggests our method

performs well for sparsely sampled data.

3.5 Real Data Analysis

Berkeley Growth Curves

The Berkeley growth data [Tuddenham and Snyder, 1953] measured 54 girls and 39

boys at 31 time points from age 1 to age 18. In the literature, this dataset often

serves as a benchmark to test clustering accuracy. A monotone smoothing spline

[Ramsay and Silverman, 2005] can be applied to the original height data. If we

evaluate the corresponding second order derivatives at these 31 measurement time

points, there exists obvious phase variation as shown in Figure 3.6. The left panel

shows the acceleration data; the right panel shows the acceleration values without first

5 timepoints excluded due to the bias of the function estimation near the boundary

[Cheng et al., 1997]. Based on Figure 3.6, we assume that there are small vertical

shifts with φ = 1.2 and the variation among observations is caused by both phase

variation and random error ε. We choose κ = 50 and θ = 10 to accommodate possible

amplitude variation, and we choose α = 4 for the Dirichlet approximation. We model
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the signal functions with 8 B-spline basis functions of order 6 defined on a equally

spaced knot sequence. The prior means of the spline coefficients are generated as

N(1, 4), and the spline coefficients are assumed independent with variance 1. We

switch 10 percent of the observations from each cluster every 10 iterations in the

burn-in stage. The number of clusters is fixed at 2 throughout the entire MCMC.

The prior cluster probabilities are both 0.5 for males and females. We perform 20000

iterations, with the first 10000 discarded as burn-in.
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Figure 3.6 Left: original growth acceleration; Right: growth acceleration without
first 5 measures.

The clustering results are shown in Table 4.2; only 3 females and 2 males are mis-

classified to the opposite gender, yielding overall cRate 94.6%. The clustering results

are plotted in the second row of Figure 3.7; the bold solid curves represent those boys

who are misclassified as girls, and the bold dashed curves represent the misclassified

girls. The right panel shows the curves after registration. For comparison, we apply

Ward’s hierarchical clustering on the unregistered data [Hothorn and Everitt, 2014],

which produces a cRate of 75.26% with 23 girls misclassified as boys. A model-based

method [Fraley and Raftery, 2002] produces a 73.08% cRate with 23 girls misclas-
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sified as boys. After registration, the Ward’s method and the model-based method

yields a 63.44% and 68.82% cRate, respectively.

Table 3.3 Clustering
results for Berkeley
acceleration curves.

True cluster
Male Female

Cluster I 37 3
Cluster II 2 51

We also apply the proposed method to the original height data and velocity data.

For the original height curves, we set α = 100 and σ2
a = 10−3, since there is no

strong evidence of time distortion and the vertical shifts constitute the majority of

the variation. We put a strong precision-related hyperparameter with κ = 5 × 104

and θ = 1 due to the highly precise height measurements. Our corresponding cRate

is 91.4%, while the SACK model (Liu and Yang, 2009) reports a 86% accuracy rate,

and KCFC (Chiou and Li, 2007) reports a 93.35% accuracy rate. For the velocity

curves, we apply our method with α = 10, κ = 50, θ = 10, φ = 5 and σ2
a = 0.12. The

cRate produced is 84.9%, while Zhang and Telesca [2014] reported a cRate of 83%.
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Figure 3.7 (a)-(b) Unregistered growth acceleration data for 39 boys (blue dashed)
and 54 girls (pink dashed) with cross-sectional mean superimposed. (c) Registered
cluster 1 with 37 boys (blue dashed) and 3 girls (pink solid). (d) Registered cluster
2 with 51 girls (pink dashed) and 3 boys (blue solid). (e)-(f) Estimated warping
functions for cluster 1 and cluster 2, respectively.
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Elutriation-Synchronized Cell Cycle

The elutriation dataset, collected by Alter et al. [2000], measures ratios of gene ex-

pression levels in log-scale 18 times, at 7-minute intervals. We apply our proposed

Bayes method to a subset of 78 gene expressions. According to Spellman et al. [1998],

this dataset is classified into five cell-cycle subgroups: M/G1, G1, S, S/G2 and G1/M.

Among these 78 gene expressions, genes 1 to 13, genes 14 to 52, genes 53 to 60, gene

61 to 67, and gene 68 to 78 are classified into these five respective phases. Note

that these different cycle phases are based on biologists’ beliefs, and therefore are not

absolutely true cluster structure. The trajectories of the dataset are shown in the left

panel of Figure 3.8.

First, we apply our method with five clusters to examine whether the clustering

results agree with the underlying biological process. Table 3.4 shows that 39 out

of 78 genes are classified in their corresponding cycle phases, highlighted by bold

numbers. The gene expressions adjacent to each other should behave similarly due

to adjacent-phase correlation. Therefore, we also highlight in italics cells adjacent to

the diagonal elements. Note that 67 out of 78 gene expression profiles are clustered

on the tridiagonal positions including 5 on the left lower corner and 1 on the right

upper corner, since cluster I and cluster V are considered to be adjacent phases by

the circular property of the data.

Table 3.4 Clustering results for cell cycle
when C = 5

Cluster M/G1 G1 S S/G2 G1/M
I (9) 5 1 0 2 1
II (26) 2 19 1 3 1
III (24) 1 15 7 1 0
IV (5) 0 4 0 0 1
V(14) 5 0 0 1 8
total 13 39 8 7 11

We next allow the algorithm to choose the number of clusters, initially using 20
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clusters. The mode of the number of non-empty clusters is 4, indicating 4 clusters.

The clustered gene expression profiles are shown in Figure 3.8 (right panel). The

aligned curves show a clear cluster structure, and all curves in the same cluster

display roughly the same pattern.

Table 3.5 Clustering results for cell cycle
when C = 4

Cluster M/G1 G1 S S/G2 G1/M
I (9) 5 1 0 2 1
II (38) 0 27 8 2 1
III (13) 1 11 0 1 0
IV (18) 7 0 0 2 9
total 13 39 8 7 11

3.6 Discussion

We have developed a Bayesian clustering method for functional observations that

works especially well for data having phase variations. If one believes the phase

variations are important characteristics in distinguishing different clusters or that

there is no phase variation, one may specify large values of α to discourage the

warping functions from departing from a 45◦ straight line. In this case, our method

approximates a Bayesian clustering of functional data without registration.

We demonstrate our algorithm’s ability to capture cluster structure and estimate

warping functions through simulation studies and real data analyses. Based on our

simulation, we observe that one should pick hyperparameters α carefully when phase

variations contribute significantly to the clustering structure. We recommend large

φ and small σ2
a when uncertain.

By using the Dirichlet warping approach, our method allows fairly arbitrary warp-

ing functions and places no assumptions on the vertical separation among clusters.

Thus, the scope of application of our method may exceed that of existing methods,

34



www.manaraa.com

which make more restrictive assumptions. Our simultaneous registration and clus-

tering approach simplifies the analysis procedure and should benefit researchers who

cluster functional data.
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Figure 3.8 (a) Raw gene expression with cluster structure determined by the
biologists. (b) Registered curves with 4 clusters. (c)-(f) Registered four clusters
with their estimated mean curves superimposed.
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Chapter 4

Clustering Functional Observations with Time

Warpings via Derivative-Shape Measure

We apply a Bayesian method to register pairs of curves potentially belonging to the

same cluster. By employing a discrete approximation generated from the Dirichlet

distribution, our Bayesian method is capable of detecting arbitrary warping functions.

After registration, we develop a “derivative sign” method to measure the dissimilar-

ity between two functional data based on their shapes, which serves as a“distance”

for clustering purposes. The clustering result can then be obtained via any desired

distance-based method afterwards.

4.1 Model Assumption

Following the Bayesian model proposed in chapter 3, we assume that there are N

objects, which belong to C clusters, with K measurements taken on each. For a

discretized functional observation in a given cluster, the response vector is modeled

by

Y = af(t) + ε,

where a is a stretching/shrinking factor accounting for amplitude variation, and f(t)

is a K × 1 vector of responses measured at a vector of time points t. The random

errors ε are generated from N(0, σ2).

If our observed data exhibit both amplitude and phase variability, the associated

warping function is denoted by h(·). The response now is Y = af [h(t)] + ε. The
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mean function f(·) is represented by a B-spline expansion with q basis functions so

that

f(t) =
q∑
j=1

φj(t)βj

throughout this paper, and the warping function is approximated by a piecewise linear

function γ(·) [Cheng et al., 2015]. See the appendix for more details.

Another possible mode of amplitude variation that the data may exhibit besides

the stretching/shrinking factor is composed of vertical shifts among observations in

the same cluster. Denote the K × 1 vertical shifts by S = S ⊗ 1. The left panel in

Figure 3.2 shows a set of simulated observations from the same cluster with phase

variations; the right panel shows the same observations with additional vertical shifts

following Unif (−0.5, 0.5). The bold curve is the true signal function generating the

observations.

Our observed response becomes

Y = aφ[γ(t)]β + S + ε,

where φ is a K × q matrix consisting of basis functions evaluated at t, and β is the

vector of basis function coefficients. Thus,

Y|β, γ, τ, s ∼ MVN
(
aφ[γ(t)]β + si, τ−1I

)
.

We parameterize the variance using the precision τ , which is convenient for our

Bayesian registration described algorithm in the appendix.

4.2 Pairwise Derivative-Shape Dissimilarity Measure Algorithm

Given a pair of curves belonging to the same cluster that differ only based upon

phase, such two curves should be similar in terms of shape if the phase variations are

removed. On the other hand, if they belong to different clusters, these two curves

should be significantly different in shape no matter what registration method we

apply to them.
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Consequently, we need to address the following two issues: (1) how to efficiently

remove phase variations for a pair of observations belonging to the same cluster; (2)

how to measure the dissimilarity between two curves after the phase variations are

removed.

Pairwise Registration

Following Cheng et al. [2015], we model the warping function by the cumulative sum

of realizations generated from a Dirichlet distribution, and we propose a Bayesian

registration method. The MCMC sampling algorithm is given in the Appendix B; it

is essentially a variation of the MCMC algorithm proposed in Chapter 3 by assuming

the number of clusters C = 1. Our proposed method can efficiently remove nonlinear

time distortion and vertical shifting. Compared to the popular register.fd function

in the R package fda [Ramsay et al., 2013], our proposed registration method is about

10 times faster in achieving a reasonably good alignment with code written in C++, and

can handle the case when vertical shifts exist. Furthermore, our proposed Bayesian

algorithm does not require any template curve for registration. Figure 4.1 shows a pair

of raw curves belonging to the same cluster (left panel), and the registered curves

(right panel) with vertical shifts removed. Notice that our registration algorithm

requires that the common domain T = [0, 1].

In section 4.2, a method of measuring the dissimilarity between two curves is

introduced and the result serves as a “distance” for the clustering purpose.

Derivative-Shape Dissimilarity Measure

For a curve y(t), define

ψij(t) =


0.5 if y′(t) ≥ 0

−0.5 if y′(t) < 0,
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where y′ represents the derivative. Given a pair of curves yi and yj we assume

they belong to the same “group” if these two functions are generated by two similar

(up to phase variation) underlying mechanisms. For example, consider the growth

accelerations of two boys with similar growth patterns. If there is no phase variation,

then we will expect that the derivatives of those two curves have the same sign. So,

a dissimilarity measure of yi and yj is given by

der(yi, yj) ≡
∫
T
|ψi − ψj| dt,

which is near zero for two curves that are “similar” in the sense just described.

However, this measure is sensitive to phase variations. For example, the landmarks

(local maximum, minimum, and inflection points, etc.) of the observed curves yi(t)

and yj(t) are likely to appear at different times. Thus, der(yi, yj) may be much greater

than 0 even if the underlying generating mechanisms (except phase variations) are

exactly the same.

Suppose curves yi and yj belong to the same cluster but have phase variation.

Denote hi : T → T and hj : T → T as the warping functions for yi and yj,

respectively. We define a derivative-shape measure to be

der{yi[hi(t)], yj[hj(t)]} =
∫
T
|ψi[hi(t)]− ψj[hj(t)]| dt

which will be near 0 for a pair of curves belonging to the same cluster.

The Bayesian registration algorithm introduced in the section 4.2 provides an

effective way of estimating the warping functions hi(t) and hj(t). Combining the

fact that our registration algorithm requires the domain T to be [0, 1], the range of

possible values of the derivative-shape measure (DSM) henceforth is also [0, 1]. Note

that DSM = 0 means two functions increase, decrease, or remain flat simultaneously

throughout the entire T ; DSM = 1 means they always behave in an opposite fashion

(one curve increases when the other one decreases, and vice versa).
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Adjustment for Monotonicity

For a pair of curves, the derivative-shape measure described in section 4.2 is always 0

if both curves are monotone increasing or decreasing. However, the true underlying

mean curves could be quite different. For example, consider 5
√
t and t2 on the interval

of [0, 1]. Under such a situation, the DSM would not provide any useful information

to distinguish these curves, and hence should be ignored. As discussed in section 4.2,

we will apply the DSM to the higher-order derivatives. The final distance between

two curves is a weighted average of all DSMs taken on the original curves and their

derivatives. If we apply the DSM up to the K-th derivative, we should place weights

(w0, w1, . . . , wK) on the K DSM values.

To address the monotonicity issue just described, we make the following adjust-

ment. For each of a pair of curves, define ξij as the ratio of the length of com-

bined intervals on which the j-th derivative of the i-th curve is monotone increasing

to the total length of the i-th curve’s domain, i = 1, 2 and j = 0, 1, . . . , K. Let

lj = |ξ1j + ξ2j − 1|, then define mj = wj(1− lj). If both curves are monotone increas-

ing or decreasing then mj = 0, which means we ignore the information on the j-th

derivative. In contrast, suppose one curve is monotone increasing and another de-

creasing, then the DSM provides the complete information for clustering andmj = wj.

Finally, we normalize the weights based on the monotonicity adjustment as

w∗j = mj∑k
l=1ml

.

Full Algorithm

To start, we presmooth all curves using a B-spline basis expansion with curvature pe-

nalized using smoothing parameters chosen by the generalized cross validation (GCV)

[Golub et al., 1979], and we use the smoothed function evaluated at the original

measurement points as our input. The first-order DSM is not sufficient to measure
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the shape dissimilarity between two functions. For example, der(r, s) = 0 for any

monotonic increasing (decreasing) functions r and t. It is necessary to apply this

derivative-shape measure to higher-order derivative(s).

Let Yi be the vector of values evaluated at t on the presmoothed curve for the

i-th observation, and t be the vector of points where the measurements are taken.

The full algorithm is as follows:

1. For a pair of observed curves yi and yj, initially assume that they belong to the

same cluster regardless of the true cluster memberships. Register (Yi, t) and

(Yj, t) by our Bayesian registration method.

2. Let γi and γj be the discrete approximation of the warping function hi and

hj, respectively. Fit smoothing spline curves with smoothing penalty λ1 on

(Yi, γi(t)) and (Yj, γj(t)), and denote the fitted function by ŷ∗i and ŷ∗j , respec-

tively, with the asterisk indicating the functions are registered. Note that λ1

should be small or even 0 since we have already presmoothed all curves. Apply-

ing the DSM defined above, we obtain der(ŷ∗i , ŷ∗j ) as a measure of dissimilarity

between these two functions after removing the phase variation.

3. We may apply the same derivative measure procedure to the derivatives of

the original functions, since the shape of a function is determined by these

derivatives. For the 1st-order derivative, we take the following steps:

• We evaluate ŷ′i[αi(t)] = d
dt
ŷi[αi(t)] at another set of points t∗. Note that

t∗ could be finer than t, since we consider the pair of discrete realizations

(ŷ′i[αi(t∗)], t∗) and (ŷ′j[αj(t∗)], t∗)

as the input of the Bayesian registration algorithm. Let us denote the

estimated warping functions for these two derivatives as βi and βj (they are
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presumably “small” if yi and yj belong to the same cluster, since the phase

variations of the raw curves have been removed in step 2), respectively.

• Then we evaluate

ŷ′i[αi(βi(t∗))],

and fit another smoothing spline ŷ∗′i with smoothing parameter λ2, which

should also be small since the derivative is taken on a smoothed curve.

Apply the same procedure on ŷ′j[αj(t)] as well.

Now, we calculate the DSM der(ŷ∗′i , ŷ∗′j ) on the registered first-derivative func-

tion.

4. Apply step 3 to higher-order derivatives if necessary, where der(ŷ∗(k)
i , ŷ

∗(k)
j ) de-

notes the DSM of the pair of k-th order derivative functions.

5. Choose a set of weights (w1, w2, . . . , wK), such that ∑iwi = 1, and calculate

the pairwise distance between yi and yj as

w∗1der(ŷ∗i , ŷ∗j ) + w∗2der(ŷ∗′i , ŷ∗′j ) + · · ·+ w∗Kder(ŷ
∗(K)
i , ŷ

∗(K)
j ),

where the weights w∗1, . . . , w∗K are defined in the end of section 4.2.

6. perform steps 1-5 on every pair of curves yi, yj to obtain a distance matrix

containing all pairwise distances.

7. Apply any preferred dissimilarity-based clustering methods, such as hierarchical

clustering or the K-medoids method, on the distance matrix calculated in step

6.

To illustrate the algorithm, let us consider the data shown in Figure 4.1. The

dissimilarity measure of the curves on the right panel is 0.02. However, the dissim-

ilarity measure of the raw curves is 0.21, which confirms the fact that the DSM is

sensitive to the phase variation. Figure 4.2 shows the first-order derivatives and their
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registered counterpart. The DSM of the curves in the left panel is 0.106, and the

DSM of those in right one is 0.072.
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Figure 4.1 Left: raw curves. Right: registered curves.
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Figure 4.2 Left: first-order derivative curves. Right: registered curves.

Next, let us examine the second-order derivatives. Figure 4.3 shows the second-
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order derivatives and their registered counterparts. The DSM of the curves in left

panel is 0.04, and the DSM of those in the right one is 0.028.
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Figure 4.3 Left: 2nd order derivative curves. Right: registered curves.

Figure 4.4 illustrates the case when we apply our procedure to curves belonging

to different clusters. The curves on left panel are raw curves and their derivatives,

while the curves in the right panel are the registered counterparts. The DSMs of

the curves in the right panels are 0.838, 0.476, and 0.368 for the original functions,

first derivative, and second derivatives, respectively; the DSMs of those in the right

panels are 0.838, 0.356, and 0.236, respectively. The DSMs are indeed reduced after

the registrations as we expected; however, the values are still large compared to the

DSMs for the pair of curves belonging to the same cluster that was shown in the

previous example. This numerical example illustrates the idea that the DSMs could

be significantly greater than 0 even after registration for curves belonging to the

different clusters.
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Figure 4.4 Left: raw curves and their derivatives. Right: registered curves.
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4.3 Simulation Study

We apply our proposed method to a set of simulated data to demonstrate its clustering

accuracy.

We generate simulated curves having domain T = [0, 1]. We specify 5 clusters,

with each cluster associated with its mean function generated from a B-spline ex-

pansion. We set 8 B-spline basis functions of order 5 with an equally-spaced knot

sequence for each of 5 clusters, and we generate 8 sets of coefficients of size 6 from

N(2, 9) independently.

We assign 5, 4, 6, 5, and 4 observations to each cluster, respectively. We evaluate

the mean function associated with each observation at 30 equally spaced points on

T . The phase variation of each observation is introduced via applying an warping

function, approximated by the cumulative sum over 20 steps distributed as Dir(α =

(0.8, . . . , 0.8)), to the clock time, with the result serving as the unobserved system

time.

For one source of amplitude variation within a cluster, we generate a set of stretch-

ing/shrinking factors from N(1, 0.04) independently. Vertical shifts, generated from

independent Unif(−2, 2), serve as another source of amplitude variation. We add nor-

mal random errors with mean 0 and variance 0.04. The top left panel of Figure 4.5

shows one set of simulated data.

For a pair of observations, we perform 200 iterations of our Bayesian registration

algorithm with the first half as burn-in. To smoothly represent the generated data, we

use a B-spline representation with 10 basis functions of order 5 with equally spaced

knots. The Bayesian registration requires the specification of several hyperparame-

ters. For registration, we choose α1 = 1 for the warping function, β0 = 0, Γ = I10 for

the spline coefficient, κ = 50, θ = 1 for the precision, σ2
a1 = 0.022, σ2

a2 = 0.032 for the

stretching/shrinking factors, and φ1 = 1, φ2 = 10 for vertical shifts. ? gave recom-

mendations about how to set these parameters. For smoothing penalty parameters,
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we choose λ1 = λ2 = 10−8 for the raw curve smoothing and its derivatives. We set the

raw weights w1 = 0.7, w2 = 0.2, and w3 = 0.1 for the original curves, first-order, and

second-order derivatives, respectively, to calculate the distance matrix. Finally, we

use Ward’s method in the R function hclust to determine the cluster membership.
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Figure 4.5 (a) A set of 24 simulated observations with 5 clusters. (b) Simulated data
with phase variation removed, with superimposed posterior estimated mean curves
(solid black). (c) True mean curves (gray) and estimated mean curves (black). (d)
Estimated warping functions for all 5 clusters.
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To examine the overall performance of our proposed algorithm, we implement

this data generation and clustering procedure 50 times. The correct classification

rate (cRate) [Liu and Yang, 2009], defined as the maximum proportion of agreements

between estimated and true cluster memberships (among all labeling permutations),

is a measure of clustering quality. The average cRate over these 50 repetitions is 92%.

After the cluster memberships are obtained via the DSMmethod, we could register

clustered curves within the same group by the Bayesian clustering method. For one

set of simulated data, our method classifies all curves in Figure 4.5(a) correctly. The

registered curves are shown in Figure 4.5(b).

To compare our method with another common dissimilarity measure, we repeat

the same simulation and clustering procedure 50 times using Euclidean distance as

the dissimilarity measure. The average cRate is 67.67% using Euclidean distance.

The side-by-side boxplots of the classification rates using the DSM metric and using

the Euclidean metric are given in Figure 4.6. Note that 9 out of 50 repetitions using

the DSM metric have 100% cRate.
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Figure 4.6 Left: cRate using DSM metric.
Right: cRate using Euclidean metric.
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4.4 Real Data Analysis

Berkeley Growth Curves

We applied our proposed method on the Berkeley growth acceleration data described

in Section 3.5. Assuming that the number of clusters C = 2, we perform 200 iterations

with first 80 as burn-in for a pair of curves with the tuning parameters shown in

Table 4.1, and use Ward’s method in the R function hclust to determine the cluster

membership. We model the signal functions with 10 B-spline basis functions of order

5 defined on a equally spaced knot sequence. The prior mean of each coefficient is

set to be 0, and the variance is I10.

Table 4.1 Parameter choices for growth data

Parameter Description Value
M # of jumps of Warping Approx. 20
φ1 vert. shift for raw curve 0.5
φ2 vert. shift for deriv. 0.1
α1 conc. param. for raw curve 30
α2 conc. param. for deriv. 60
λ1 smoothing. param. for raw curve 10−9

λ2 smoothing param. for deriv. 10−5

σ2
a1 var. of stretching factor for raw curves 0.022

σ2
a2 var. of stretching factor for deriv. 0.032

T # of points taken for deriv. 40
(w1, w2, w3) weights for clustering (0.7, 0.2, 0.1)

The clustering results are shown in Table 4.2; only 8 females and 3 males are mis-

classified as the opposite gender, yielding an overall cRate of 90.32%. The clustering

results are plotted in Panel (c) and (d) of Figure 4.7; the bold solid curves represent

those boys who are misclassified as girls, and the bold dashed curves represent the

misclassified girls. The right panel shows the curves after registration.

To compare our method with a classic distance-based clustering method, we clus-

ter the growth acceleration data based on Euclidean distance. The results are shown
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Table 4.2 Clustering
results for Berkeley
acceleration curves.

True cluster
Male Female

Cluster I 36 8
Cluster II 3 46

in Table 4.3; all boys are classified correctly but 23 girls are misclassified, yielding a

75.87% cRate.

Table 4.3 Clustering
results for Berkeley
acceleration curves based on
Euclidean distance.

True cluster
Male Female

Cluster I 39 0
Cluster II 23 31

Response of Human Fibroblasts to Serum

Iyer et al. [1999] measured the response of fibroblasts to serum of 8613 time-course

gene expressions using cDNA microarrays. Normal human fibroblasts require growth

factors for proliferation, which is usually provided by fetal bovine serum (FBS). The

authors stimulated the fibroblasts of serum deprivation by addition of medium con-

taining 10% FBS. The responses were measured at 12 times, ranging from 15 minutes

to 24 hours after serum stimulation. They applied a cluster analysis on a subset of

517 genes whose expression changed substantially in response to serum. We analyze

a subset of 80 gene expressions. The raw data are shown in Figure 4.8.

We perform 200 iterations (with first 80 as burn-in) for a pair of curves with the

tuning parameters shown in Table 4.4. We model the signal functions with 10 B-spline

basis functions of order 5 defined on a equally spaced knot sequence. The prior mean
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of each coefficient is set to be 0, and the variance is I10. We use Ward’s method in the

R function hclust to determine the cluster membership. To determine the number of

clusters, ? proposed a graphical method called silhouettes to validate the clustering

quality and determine the proper number of clusters. The plot of the number of

clusters versus the average silhouette width is shown in Figure 4.9. The silhouette

width is between -1 and 1 with a larger number indicating a better clustering quality.

Figure 4.9 suggests the proper number of clusters is between 3 and 6. After a careful

graphical examination of the registered curves in each cluster, we decide choose the

number of clusters C = 4.

The clustering result is given in Figure 4.10. The registered curves shows a clearer

pattern after the vertical shifts are removed as shown in Figure 4.10 (b). All curves

in the same cluster are roughly follow the same pattern as shown in panel (c)-(f) of

Figure 4.10. Note that four curves separate from the majority in panel (b) due to

the vertical shifts. One advantage of our method over the classic registration method

proposed by Ramsay and Silverman [2005] is the ability of handling vertical shifts.

The mean (bold) curves of panel (c) and (f) seem to follow a similar shape. However,

the left portion in (c) is concave down while the counterpart in (f) is concave up.

Subtle differences in terms of shape like that are successfully captured by the DSM

method. For an explanation of the connection between the clustering result and the

functionalities of each gene, for example, see Zhang and Telesca [2014], who previously

analyzed this data set.

4.5 Discussion

We have developed a derivative-based method to measure the dissimilarity between a

pair of curves with their possible phase variation removed by our Bayesian registration

method. If one believes the important difference among clusters is subtle shape

variation like different concavity on the same increasing or decreasing interval, our
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Table 4.4 Parameter choices for HFS data

Parameter Description Value
M # of jumps of Warping Approx. 20
φ1 vert. shift for raw curve 3
φ2 vert. shift for deriv. 1
α1 conc. param. for raw curve 5
α2 conc. param. for deriv. 10
λ1 smoothing. param. for raw curve 10−9

λ2 smoothing param. for deriv. 10−5

σ2
a1 var. of stretching factor for raw curves 0.052

σ2
a2 var. of stretching factor for deriv. 0.052

T # of points taken for deriv. 30
(w1, w2, w3) weights for clustering (0.7, 0.2, 0.1)

proposed method is effectively capture such difference by examining the higher order

derivatives. Our Bayesian registration scheme provides a flexible yet computational

efficient way to register a pair of curves. Compared to the classic registration methods,

the ability of handling vertical shifts of our Bayesian approach is necessarily for

applications like RHFS in section 4.4.

We demonstrate clustering accuracy our algorithm via simulation studies and real

data analyses. For the choices of various parameters, see the discussion in section 3.4.

They recommended to chose steps of discrete approximationM based on a scree plot,

and use large shift parameter φ and small stretching/shrinking parameter σ2
a when

uncertain.

In the spirit of nonparametric method, our algorithm imposes fewer assumptions

on the curves. By using the derivative-shape measure as a distance proxy, our method

is robust against vertical shifts, stretches, and shrinkages among curves. Our Bayesian

registration method allows a fairly flexible approximation to the warping functions,

which greatly extends the scope of applications compared to the existing methods.
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Figure 4.7 (a)-(b) Unregistered growth acceleration data for 39 boys (blue
dashed) and 54 girls (pink dashed) with cross-sectional mean superimposed.
(c) Registered cluster 1 with 36 boys (blue dashed) and 3 girls (pink solid).
(d) Registered cluster 2 with 46 girls (pink dashed) and 8 boys (blue dashed).
(e)-(f) Estimated warping functions for cluster 1 and cluster 2, respectively.
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Figure 4.8 Raw data of the response of
human fibroblasts to serum.
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Figure 4.9 The number of clusters versus
the average silhouette width.
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Figure 4.10 (a) Raw data with cluster structure determined by the algorithm. (b)
Registered curves with vertical shifts removed. (c)-(f) Registered four clusters with
their estimated mean curves superimposed.
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Chapter 5

Adapted Variational Bayes Method

In this chapter, we derive an adapted variational Bayes method [Earls and Hooker,

2015] for our model proposed in Chapter 2. As an inference method that is fast com-

pared to Markov chain Monte Carlo, the application of variational approximations

are popular in the computer science community and gaining more attention from the

statistics community [Ormerod and Wand, 2010]. Here, we focus on the approxima-

tion under the product density transformation [Bishop, 2006, Ormerod and Wand,

2010]. Let y and θ denote observations and parameters, respectively. Then it can be

shown that

log p(y) =
∫
q(θ) log

{
p(y,θ)
q(θ)

}
dθ +

∫
q(θ) log

{
q(θ)
p(θ|y)

}
dθ, (5.1)

where q(·) is an arbitrary density function of the parameter space Θ, and p(y) is

the marginal likelihood function. Note that the second term in the RHS of equation

(5.1) is the Kullback-Leibler divergence [Kullback and Leibler, 1951] between q(θ)

and p(θ|y), satisfying
∫
q(θ) log

{
q(θ)
p(θ|y)

}
dθ ≥ 0. It follows that

log p(y) ≥
∫
q(θ) log

{
p(y,θ)
q(θ)

}
dθ (5.2)

with equality attained when q(θ) = p(θ|y) almost everywhere. We define the lower

bound of the variational approximation as exp
∫
q(θ) log

{
p(y,θ)
q(θ)

}
dθ. The goal is to

maximize this lower bound, so that the K-L divergence between the posterior p(θ|y)

and the approximation q(θ) is minimized. In the machine learning literature, p(y) is

called the model evidence [Bishop, 2006] which provides a foundation for performing

Bayesian model selection.
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The product density transforms assume the approximated posterior distribution

q(θ) = ∏M
i=1 qi(θi). It is important to notice that this is the only assumption imposed

in order to make the approximation. It takes an iterative approach to maximize the

lower bound. The current update for the i-th parameter θi, i = 1, 2, . . . ,M , involves

updating

q∗i (θi)←
exp{E−θi log p(y,θ)}∫

exp{E−θi log p(y,θ)} dθi
, (5.3)

where the expectations are taken with respect to all updated parameters but θi, and

the asterisk indicating the updated optimal approximation of p(θi|y) at the current

iteration. This updating scheme increases the lower bound exp
∫
q(θ) log

{
p(y,θ)
q(θ)

}
dθ

at each iteration, and therefore the local optimum is guaranteed [Ormerod and Wand,

2010]. In practice, we monitor the lower bound until a certain convergence criterion is

satisfied. It can be shown that the expectation-maximization (EM) [Dempster et al.,

1977] algorithm could be viewed as a special case of this variational approximation

algorithm [Tzikas et al., 2008].

If the prior of θi is in the conjugate family, we obtain the closed-form update

of θi similar to the MCMC counterpart without integrating the denominator in the

expression (5.3). If some parameter θk does not have a conjugate prior, Earls and

Hooker [2015] suggest updating the estimate of θk by maximizing qk(θk) with respect

to θk, which is equivalent to updating

θ∗k = arg sup
θk

{
exp{E−θi log p(y,θ)}

}
. (5.4)

Earls and Hooker [2015] refer to this modified approach as the adapted variational

Bayes (AVB). It is straightforward to show that the AVB algorithm increases the

lower bound at each iteration. Following the derivation of the posterior sampling

in section 3.2 for our Bayesian model proposed in Chapter 3, there is no closed-

form update for the Dirichlet jumps γ1, . . . ,γN . We will update these jumps by

directly maximizing the corresponding q() function, which is defined in (5.7), via a
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constrained optimization. The details of the constrained optimization are discussed

in Appendix C; The details of the AVB algorithm are given in Section 5.1, and the

convergence criterion is given in Appendix D.

5.1 Adapted Variational Bayes Algorithm

Following the full Bayesian method described in section 3.1, the joint distribution of
the data and parameters is

L(β1, . . . ,βC , γ1, . . . , γN , z1, . . . ,zN , p1, . . . , pC , τ, a1, . . . , aN , s1, . . . , sN ,y1, . . . ,yN )

∝
N∏
i=1

τK/2 exp
{
−1

2τ
N∑
i=1

C∑
c=1

(
‖yi − aiφ[γi(t)]βc − si‖2

)
zic

}
C∏
c=1

exp
{
−1

2(βc − β
c
0)TΓ−1(βc − β

c
0)
}

N∏
i=1

M∏
m=1

γα0−1
im

C∏
c=1

p

∑N

i=1
zic+ηc−1

c τκ−1 exp{−τθ} exp
{
−1

2

N∑
i=1

(ai − 1)2

}
N∏
i=1

1{−φ<si<φ}

∝ exp
{
KN

2 ln τ − 1
2τ

N∑
i=1

C∑
c=1

(
‖yi − aiφ[γi(t)]βc − si‖2

)
zic

}
C∏
c=1

exp
{
−1

2(βc − β
c
0)TΓ−1(βc − β

c
0)
}

N∏
i=1

M∏
m=1

γα0−1
im

C∏
c=1

p

∑N

i=1
zic+ηc−1

c τκ−1 exp{−τθ} exp
{
− 1

2σ2
a

N∑
i=1

(ai − 1)2

}
N∏
i=1

1{−φ<si<φ}

The log-likelihood function is given by

lnL(β1, . . . ,βC , γ1, . . . , γN , z1, . . . ,zN , p1, . . . , pC , τ, a1, . . . , aN , s1, . . . , sN ,y1, . . . ,yN )

= KN

2 ln τ − 1
2τ

N∑
i=1

C∑
c=1

(
‖yi − aiφ[γi(t)]βc − si‖2

)
zic +

C∑
c=1
−1

2(βc − β
c
0)TΓ−1(βc − β

c
0)

+(α0 − 1)
N∑
i=1

M∑
m=1

ln γim +
C∑
i=1

N∑
i=1

(zic + ηc − 1) ln pc + (κ− 1) ln τ − τθ −

1
2σ2

a

N∑
i=1

(ai − 1)2 +
N∑
i=1

ln 1{−φ<si<φ} + const.

Under the product decomposition assumption, we have

q(z,p, γ,β, τ,a, s) = q(z)q(p)q(γ)q(β)q(τ)q(a)q(s)
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For each iteration, we need to calculate

ln q∗(Z) = E−Z[lnP(Y,Z,p,γ,β,a, s, τ)]

= Eβ,τ,a,s[lnP(Y,γ|Z,a, s)] + Ep[lnP(z|p)]

= Eβ,τ,a,s

[
K/2 ln τ − 1

2τ
N∑
i=1

C∑
c=1

(
‖yi − aiφ[γi(t)]βc − si‖2

)
zic

]
+

Ep

[
C∑
c=1

N∑
i=1

(zic + ηc − 1) ln pc

]

=
N∑
i=1

C∑
c=1

zic

{
K

2 Eτ (ln τ)− 1
2Eτ (τ)Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2 + Ep(ln pc)

}
+

constant not involving z.

Further, we have

Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2

= Eβ,a,s

 K∑
j=1

(yij − aiφ[γi(tj)]βc − si)2


=

K∑
j=1

(
y2
ij + Ea(a2

i )Eβ(φ[γi(tj)]βc)2 + Es(s2
i )− 2Ea(ai)φ[γi(tj)]Eβ(βc)yij − 2Es(si)yij

+2Ea(ai)Es(si)φ[γi(tj)]Eβ(βc)
)

=
K∑
j=1

(
y2
ij +

[
(σ2
ai)
∗ + (µ∗ai)

2
]
φ[γi(tj)](Σ∗βc + µ∗βcµ

∗T
βc

)φT [γi(tj)] + (σ2
si)
∗ + (µ∗si)

2

−2µ∗aiφ[γi(tj)]µ∗βcyij − 2µ∗siyij + 2µ∗aiµ
∗
siφ[γi(tj)]µ∗βc

)
. (5.5)

Define

ln ρic

= K

2 Eτ (ln τ)− 1
2Eτ (τ)

{
Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2

}
+ Ep(ln pc).

We have

q∗(Z) ∝
N∏
i=1

C∏
c=1

ρzicic .

By normalizing the above distribution, we obtain

q∗(Z) =
N∏
i=1

C∏
c=1

rzicic ,
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where we have defined

ric = ρic∑C
l=1 ρil

. (5.6)

The quantity ric is also called “responsibility” in the machine learning literature.

For the warping function, we need to maximize ln q∗(γi) with respect to γi. For

the i-th observation, the log-likelihood function is given by

ln q∗(γi)

= −1
2Eτ,β,z

{
τ

[
C∑
c=1

(
‖yi − aiφ[γi(t)]βc − si‖2

)
zic

]}
+ (α0 − 1)

M∑
m=1

ln γim + const.

= −1
2

C∑
c=1

{
ricµ

∗
τEβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2

}
+ (α0 − 1)

M∑
m=1

ln γim + const

= −1
2

C∑
c=1

{
ricµ

∗
τ

K∑
j=1

([
(σ2

ai
)∗ + (µ∗ai)

2
]
φ[γi(tj)](Σ∗βc + µ∗βcµ

∗T
βc

)φT [γi(tj)]

−2µ∗aiφ[γi(tj)]µ∗βcyij + 2µ∗aiµ
∗
si
φ[γi(tj)]µ∗βc

)}

+(α0 − 1)
M∑
m=1

ln γim + const (5.7)

under the constraint ∑M
m=1 γim = 1 and γim > 0. We maximize (5.7) with respect

to γi1, . . . , γiM to obtain the optimal γ∗i . For an efficient and accurate optimization,

it is necessary to derive the gradient of (5.7). Due to the simplicity of the linear

approximation, it is possible to derive the closed-form expression. The formula of the

derivative is given by (C.5) in Appendix C.

For cluster probability p, we have

ln q∗(p) = E−p
{

C∑
c=1

(
N∑
i=1

zic + η − 1
)

ln pc
}

+ const

=
C∑
c=1

(
N∑
i=1

ric + η − 1
)

ln pc + const

Therefore,

q∗(p) ∼ Dir

(
N∑
i=1

ri1 + η, . . . ,
N∑
i=1

riC + η

)
.
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To ease the notation in deriving the lower bound of the algorithm, let us denote

αc =
N∑
i=1

ric + η, (5.8)

and

α̂ =
C∑
c=1

N∑
i=1

ric + Cη = N + cη. (5.9)

For the spline coefficient βk,

ln q∗(βk)

= E−βk

{
−1

2τ
N∑
i=1

(
‖yi − aiφ[γ∗i (t)]βk − si‖2

)
zik −

1
2(βk − β0k)TΓ−1(βk − β0k)

}

= −1
2

N∑
i=1

{
rikEτ (τ)Ea,s

(
‖yi − aiφ[γ∗i (t)]βk − si‖2

)}
− 1

2(βk − β0k)TΓ−1(βk − β0k)

+ const

= −1
2

N∑
i=1

(
rikEτ (τ)Ea(a2

i )βTkφT [γ∗i (t)]φ[γ∗i (t)]βk
)
− 1

2β
T
k Γ−1βk +

N∑
i=1

(βTk rikEτ (τ)Ea(ai)φT [γ∗i (t)])(yi − µ∗si)− β
T
k Γ−1β0k + const

= −1
2β

T
k

(
µ∗τ

N∑
i=1

rik((σ2
ai)
∗ + µ2

ai)φ
T [γ∗i (t)]φ[γ∗i (t)] + Γ−1

)
︸ ︷︷ ︸

call it Ak

βk −

βTk

(
µ∗τ

N∑
i=1

rikµ
∗
aiφ

T [γ∗i (t)](yi − µsi) + Γ−1β0k

)
︸ ︷︷ ︸

call it ck

+ const.

It follows that β∗k ∼ MVN(A−1
k ck,A−1

k ).

For precision parameter τ ,

ln q∗(τ) = KN

2 ln τ − 1
2τ

N∑
i=1

C∑
c=1

ric
(
Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2

)
+

(κ− 1) ln τ − θτ + const.

It follows that

τ ∗ ∼ Gamma

(
KN

2 + κ,
1
2

N∑
i=1

C∑
c=1

ric
(
Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2

)
+ θ

)
,
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where Eβ,a,s(‖yi − aiφ[γi(t)]βc − si‖2) is given by (5.5). Let us denote the updated

shape and rate parameters by

κ∗ = KN

2 + κ, (5.10)

and

θ∗ = 1
2

N∑
i=1

C∑
c=1

ric
(
Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2

)
+ θ. (5.11)

For stretching/shrinking factor ai, we have

ln q∗(ai)

= E−a

{
−1

2τ
C∑
c=1

zic ‖yi − aiφ[γi(t)]βc − si‖2
}
− 1

2σ2
a

(ai − 1)2 + const

= E−a

−1
2τ

C∑
c=1

zic

 K∑
j=1

a2
i (φ[γi(tj)]βcβTc φT [γi(tj)])−

K∑
j=1

2aiφ[γi(tj)]βc(yij − si)


− 1

2σ2
a

a2
i + 1

σ2
a

ai + const

= −1
2

 1
σ2
a

+ µ∗τ

C∑
c=1

ric

 K∑
j=1

φ[γi(tj)])(Σ∗βc + µ∗βc(µ
∗
βc

)T )φT [γi(tj)])

 a2
i

+

µ∗τ
C∑
c=1

ric

 K∑
j=1

µ∗icj(yij − µsi)

+ 1
σ2
a

 ai + const,

where we have defined the j-th element of φ(γ∗i (t))µ∗βc and yi by µ∗icj and yij,

respectively.

By completing the square, we have the optimal q∗(ai) follows a normal distribution

with

µ∗ai =
µ∗τ
∑C
c=1 ric

[∑K
j=1 µ

∗
icj(yij − µsi)

]
+ 1/σ2

a

1/σ2
a + µ∗τ

∑C
c=1 ric

[∑K
j=1 φ[γ∗i (tj)])(Σ∗βc + µ∗βc(µ

∗
βc

)T )φT [γi(tj)])
] , (5.12)

and

(σ2
ai

)∗ = 1
1/σ2

a + µ∗τ
∑C
c=1 ric

[∑K
j=1 φ[γ∗i (tj)])(Σ∗βc + µ∗βc(µ

∗
βc

)T )φT [γi(tj)])
] . (5.13)
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For the i-th shift parameter si, we have

ln q∗(si)

= E−a
{
−1

2τ
C∑
c=1

zic ‖yi − aiφ[γ∗i (t)]βc − si‖2
}

+ ln 1{−φ<si<φ} + const

= E−a

−1
2τ

C∑
c=1

zic

 K∑
j=1

(s2
i − 2(yij − aiφ[γ∗i (tj)]βc)si

+ ln 1{−φ<si<φ} + const

= −1
2Eτ (τ)K

si −
∑C
c=1

(
ric
∑K
j=1 µ

∗
ai
dicj

)
K

2

+ ln 1{−φ<si<φ} + const,

where we have defined dicj = yij − aiφ[γ∗i (tj)]βc.

It follows that

q∗(si) ∼ N

∑C
c=1

(
ric
∑K
j=1 µ

∗
ai
dicj

)
K

,
1

µ∗τK

1{−φ<si<φ}.

Let us denote

µ̃si =
∑C
c=1

(
ric
∑K
j=1 µ

∗
ai
dicj

)
K

, (5.14)

and

σ̃2
si

= 1
µ∗τK

. (5.15)

By a property of the truncated normal distribution, the approximated mean and

variance of si at current iteration are given by

µ∗si = µ̃si +
φ(−φ−µ̃si

σ̃si
)− φ(φ−µ̃si

σ̃si
)

Φ(−φ−µ̃si
σ̃si

)− Φ(φ−µ̃si
σ̃si

)
σ̃si, (5.16)

and

(σ2
si)
∗ = σ̃2

si

1 +
−φ−µ̃si
σsi

φ(−φ−µ̃siσ̃si
)− φ−µ̃si

σ̃si
φ(φ−µ̃siσ̃si

)

Φ(φ−µ̃siσ̃si
)− Φ(−φ−µ̃siσ̃si

)
−

 φ(−φ−µ̃siσ̃si
)− φ(φ−µ̃siσ̃si

)

Φ(φ−µ̃siσ̃si
)− Φ(−φ−µ̃siσ̃si

)

2(5.17)

where φ(·) is the probability density function of the standard normal distribution

and Φ(·) is its cumulative distribution function.

A summary of the AVB algorithm is given in Algorithm 1.
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Algorithm 1: Adapted variational Bayes algorithm for simultaneous clustering
and registration of functional data
Initialize:
For i = 1, . . . , N ,

γik > 0 for k = 1, . . . ,M , such that ∑M
k=1 γik = 1;

ric > 0 for c = 1, . . . , C, such that ∑C
c=1 ric = 1;

µsi ∈ R and σ2
si
> 0; µai ∈ R and σ2

ai
> 0.

For c = 1, . . . , C,
µβc ∈ Rq and Σβ > 0;
µpc > 0 such that ∑C

c=1 µpc = 1; µln pc < 0.
µτ > 0; µln τ ∈ R.
Cycle:
For i = 1, . . . , N ,

γi ←
arg supγi

{
−1

2
∑C
c=1

{
ricµτEβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2

}
+ (α0 − 1)∑M

m=1 ln γim
}
,

update Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2 with γi updated,
ric ←

exp{K2 µln τ− 1
2µτ{Eβ,a,s‖yi−aiφ[γi(t)]βc−si‖2}+µln pc}∑C

l=1 exp{K2 µln τ− 1
2µτ{Eβ,a,s‖yi−aiφ[γi(t)]βl−si‖2}+µln pl}

,

µai ←
µτ
∑C

c=1 ric

[∑K

j=1 µicj(yij−µsi )
]

+1/σ2
a

1/σ2
a+µτ

∑C

c=1 ric

[∑K

j=1 φ[γi(tj)])(Σβc+µβc (µβc )T )φ′[γi(tj)])
] ,

σ2
ai
← 1

1/σ2
a+µτ

∑C

c=1 ric

[∑K

j=1 φ[γi(tj)])(Σβc+µβc (µβc )T )φT [γi(tj)])
] ,

where µicj and yij are the j-th element of φ(γi(t))µβc and yi, respectively.
Update Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2 with µai and σ2

ai
updated,

µsi ← µ̃si +
φ(−φ−µ̃si

σ̃si
)−φ(φ−µ̃si

σsi
)

Φ(−φ−µ̃si
σ̃si

)−Φ(φ−µsi
σ̃si

)
σ̃si,

σ2
si
← σ̃2

si

1 +
−φ−µ̃si
σ̃si

φ(−φ−µ̃si
σ̃si

)−φ−µ̃si
σ̃si

φ(φ−µ̃si
σ̃si

)

Φ(φ−µ̃si
σ̃si

)−Φ(−φ−µ̃si
σ̃si

)
−
(
φ(−φ−µ̃si

σ̃si
)−φ(φ−µ̃si

σ̃si
)

Φ(φ−µ̃si
σ̃si

)−Φ(−φ−µ̃si
σ̃si

)

)2, where µ̃si
and σ̃2

si
are given in (5.14) and (5.15), respectively.

Update Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖
2 with µsi and σ2

si
updated.

For c = 1, . . . , C,
µβc ←(
µτ
∑
i ric((σ2

ai
) + µ2

ai
)φT [γi(t)]φ[γi(t)] + I

)−1
µτ
∑N
i=1 ricµaiφ

T [γi(t)](yi −
1K ⊗ µsi),
Σβc ←

(
µτ
∑
i ric(σ2

ai
+ µ2

ai
)φT [γi(t)]φ[γi(t)] + I

)−1
,

µpc =
∑N

i=1 ric+η
Cη+

∑C

c=1

∑N

i=1 ric
, µln pc ← ψ(∑N

i=1 ric + η)− ψ(Cη +∑C
c=1

∑N
i=1 ric),

where ψ(·) is the digamma function.
µτ ←

KN
2 +κ

1
2
∑N

i=1

∑C

c=1 ric(Eβ,a,s‖yi−aiφ[γi(t)]βc−si‖2)+θ
,

µln τ ← ψ(KN2 + κ)− ln
(

1
2
∑N
i=1

∑C
c=1 ric

(
Eβ,a,s ‖yi − aiφ[γi(t)]βc − si‖2

)
+ θ

)
.
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5.2 Choosing Initial Values

Similarly to its MCMC counterpart, our AVB method produces parameter estimates

that are somewhat sensitive to the choice of initial values. In Chapter 2, we recom-

mended switching p% of observations in each cluster every k iterations, which greatly

improves the mixing and facilitates finding sensible initial values for our MCMC sam-

pling. We propose a method of choosing initial values that mirrors to the approach

for the full Bayesian algorithm.

For a given iteration, the expression of the (i, c)-th element of the responsibility

matrix is given in (5.6), which essentially quantifies the likelihood of the i-th obser-

vation belonging to the c-th cluster. We classify the i-th observation into the cluster

with the highest value among C responsibilities ric, c = 1, . . . , C. Note that each

row of the responsibility matrix has one element close to 1 and all other close to 0

after just several iterations. We adjust the responsibility matrix every m (typically

3 or 4) iterations as follows: We randomly select p% of observations in a cluster

and randomly classify them into another cluster by setting the corresponding cluster

responsibility value to 1. The same pattern is observed for the AVB method as we

observed in Chapter 3: Should the switch result in a poorer clustering, we note based

on experimentation that the algorithm can adjust itself and is likely to recover indi-

vidual classifications of the previous partitions that were correct. Furthermore, one

advantage of variational approximation is that the lower bound is monitored through

iterations. A higher value of the lower bound indicates a better approximation to the

posterior in general, so we may consider picking the initial values to be the parameter

estimates corresponding to the highest lower bound. For computational efficiency, we

disable the optimization part of updating γij during the process of choosing initial

values.

Sensible initial values are useful even for the procedure of choosing the initial

values. We recommend using some existing clustering method, such as a model-
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based or K-means method, to obtain reasonable starting values of the responsibility

matrix and the B-spline coefficients for each cluster.

Finally, we run the full AVB method summarized in Algorithm 1 with the initial

values described above.

5.3 Choosing the Number of Clusters

Using the variational method to choose the number of clusters when clustering mul-

tivariate normal data has proven to be successful in the literature. In Chapter 10,

Bishop [2006] suggested starting with an excessive number of clusters and waiting

for the number of nonempty clusters to drop throughout the iterations. Corduneanu

and Bishop [2001] proposed an expectation-maximization type algorithm. Their al-

gorithm also starts with an excessive number of clusters. We take a similar approach.

In the E-step, the variational solution of the approximated posterior distributions is

obtained via Algorithm 1 for all parameters except cluster probability vector p with

only 1 iteration; in the M-step, the lower bound is maximized with respect to the

cluster probability vector (p1, p2, . . . , pC∗), where C∗ is the total number of non-empty

clusters in the current iteration. By taking the gradient of the lower bound (D.1) with

respect to p and setting it to 0, the solution of pc is found to be

pc = 1
N

N∑
i=1

ric,

where the expression of ric is given by (5.6). Once a cluster becomes empty, the

next iteration excludes this cluster and the total number of clusters drops by 1. We

adopt the idea of this algorithm and allow p% of observations to exchange member-

ships across different clusters every m iterations as described in the last section. We

recommend running several extra steps without switching membership in the end to

counteract any potential membership misspecification due to the membership switch.
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For computational efficiency, we do not apply the optimization component of our

proposed algorithm for choosing C.

5.4 Simulation Study

In this section, we apply our proposed adapted variational method on a set of simu-

lated data to demonstrate its functionality for simultaneous clustering and registra-

tion. We specify 4 clusters, and thus generate 4 mean functions, which are

f1(t) = 1.5 cos(5t) + 0.5 sin(5t), f2(t) = cos(10t), f3(t) = sin(5t), and f4(t) = t2.

We assign 5, 6, 5, and 7 observations (23 total observations) to each cluster, re-

spectively, and generate 23 warping functions with 20 steps distributed as Dir(α =

(1, . . . , 1)). We assume that 30 equally spaced measurements on T are taken from

each curve. The simulated warping functions are applied to the clock time, and the

underlying process times are obtained for each observation. For the i-th observa-

tion, we evaluate the B-spline function at its corresponding process times. A set of

stretching/shrinking factors of size 23 is generated as independent N(1, 0.052) and

multiplied to the mean values of the corresponding observations. Finally, we add

white noise with σ2 = 0.04 to each observation at each time point. A vertical shift

generated from Unif (−1, 1) is added to each observation. A plot of the simulated

dataset is shown in the top left panel of Figure 5.2.

To analyze the simulated data, we model the underlying mean curves via a B-

spline representation with 6 basis functions of order 4 with equally spaced knots.

The means β0 of the B-spline are taken to be 0, and we assume those coefficients

are independent with variance 1, i.e., β|β0,Γ ∼ N(0, I). For the hyperparameters,

we choose κ = 25, θ = 1 for the precision, φ = 1 for the vertical shifts, and α = 1

for the warping functions. Following the method of choosing the number of clusters

in section 5.3, we start with C = 8 and the algorithm correctly specifies C = 4
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within 100 iterations and remains at 4 clusters for the rest of the iterations. The

final variational results are obtained via applying Algorithm 1 with 10 iteration with

the initial values specified by the estimates from the procedure of choosing C. The

lower bounds across iterations are shown in Figure 5.1. Note that the 0-th value of

the lower bound is the last lower bound obtained in the procedure of choosing C.
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Figure 5.1 Lower bounds of the simulation study

For this set of simulated data, our proposed method specifies all the cluster mem-

berships correctly. The curves after we remove the phase variations and vertical shifts

are shown in the upper right panel of Figure 5.2. The lower left panel of Figure 5.2 dis-

plays the true signal curves (gray) and our posterior estimated signal curves (black).

The estimated warping functions are shown in the lower right panel.
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Figure 5.2 (a) A set of 23 simulated observations with 4 clusters. (b) Simulated
data with phase variation removed, with superimposed posterior estimated mean
curves (solid black). (c) True mean curves (gray) and estimated mean curves
(black). (d) Estimated warping functions for all 4 clusters.

5.5 Real Data Analysis

Berkeley Growth Data

We apply the AVB method to the Berkeley growth acceleration data. To compare

the results with what we obtained in Chapter 2, we choose the same parameters and
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hyperparameters as in the Chapter 2. Namely, we model the signal functions with

8 B-spline basis functions of order 6 defined on a equally spaced knot sequence. We

choose α = 4, κ = 50, θ = 10, σ2
a = 0.052, and φ = 1.2. In order to compare the

result with the underlying clustering structure in terms of gender, we assume C = 2

clusters throughout all the iterations.

To pick a set of initial values, we run the algorithm with 50 iterations. We switch

20% of the observations in each cluster every 3 iterations and let the algorithm run

as a usual variational method for the last 10 iterations. After obtaining the initial

values, we run our proposed AVB algorithm for 10 iterations. The lower bounds are

shown in Figure 5.3. Note that iteration 0 corresponds to the lower bound of the last

iteration in the procedure of obtaining the initial values.
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Figure 5.3 Lower bound of AVB for Berkeley acceleration
data
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The clustering results are shown in Table 5.1; nine females and two males are

misclassified to the opposite gender, yielding overall cRate 88.17%. The clustering

results are plotted in the second row of Figure 5.4; the solid blue curves represent those

boys who are misclassified as girls and the pink solid curves represent the misclassified

girls in panels (c) and (d), respectively. The estimated warping functions are shown

in the last row of Figure 5.4.

Table 5.1 Clustering
results for Berkeley
acceleration curves by AVB.

True cluster
Male Female

Cluster I 37 2
Cluster II 9 45

Response of Human Fibroblasts to Serum

We apply the AVB method to the human fibroblasts to serum data described in

Section 5.5. We model the signal functions with 6 B-spline basis functions of order 4

defined on a equally spaced knot sequence. We choose α = 5, κ = 1, θ = 1, σ2
a = 0.12,

and φ = 3. Following the method of choosing the number of clusters in section 5.3,

we start with C = 10 and the algorithm ends up with C = 5 within 150 iterations.

To pick a set of initial values, we run the algorithm with 50 iterations. We switch

20% of the observations in each cluster every 3 iterations and let the algorithm run

as a usual variational method for the last 10 iterations. After obtaining the initial

values, we run our proposed AVB algorithm for 10 iterations. The raw data with

estimated cluster memberships are shown in the right panel of Figure 5.5.
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Figure 5.4 (a)-(b) Unregistered growth acceleration data for 39 boys (blue dashed)
and 54 girls (pink dashed) with cross-sectional mean superimposed. (c) Registered
cluster 1 with 36 boys (blue dashed) and 9 girls (pink solid). (d) Registered cluster
2 with 45 girls (pink dashed) and 3 boys (blue dashed). (e)-(f) Estimated warping
functions for cluster 1 and cluster 2, respectively.
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Figure 5.5 Left: Raw HFS data. Right: Raw HFS data with estimated membership.

The lower bounds are shown in Figure 5.6. Note that iteration 0 corresponds to

the lower bound of the last iteration in the procedure of obtaining the initial values.

The clustering result is given in Figure 5.7. The registered curves shows a clearer

pattern after the vertical shifts are removed, as shown in Figure 5.7 (a). All curves

in the same cluster roughly follow the same pattern as shown in panels (b)-(f) of

Figure 5.7. The estimated warping functions are shown in Figure 5.8.

5.6 Discussion

We have developed a variational approximation of the full Bayesian approach pro-

posed in Chapter 3. Demonstrated by a simulation study and real data analysis,

our proposed method produces promising results in terms of cluster accuracy and

registrations in a relatively short amount of time. This adapted variational approach

could serve as an independent clustering tool for functional observations with time

warping or, at the very minimum, could help us choose the number of clusters and

initial values for our full Bayesian inference.
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Figure 5.6 Lower bound of AVB for HFS data
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Figure 5.7 (a) Registered curves with vertical shifts removed. (b)-(f) Registered
five clusters with their estimated mean curves superimposed.
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Figure 5.8 Estimated warping functions for HFS data
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Appendix A

Choosing the Number of Clusters C

The following algorithm determines whether we accept the decrease of the number of

clusters by 1. Let the number of non-empty clusters at iteration t be denoted by C [t].
Algorithm 2: Accept or reject the change of the number of clusters.

At iteration t, C [t−1] = C∗ and C [t] = C∗ − 1;

if avg logLC∗ > avg logLC∗+1 then
accept C [t] = C∗ − 1;

else
reset C [t] = C∗ + 1;

reset the cluster membership to the first iteration in the most recent block

of iterations where the number of clusters is C∗ + 1;

The following algorithm determines whether we increase the number of clusters

by 1 if the Markov chain stays at the same number of non-zero clusters for a long

period.
Algorithm 3: Accept or reject the change the number of clusters when MC∗ >

M0.

At iteration t, C [t] = C∗ and MC∗ > M0;

if avg logLC∗ > avg logLC∗+1 then
keep C [t] = C∗;

else
reset C [t] = C∗ + 1;

reset the cluster membership to the first iteration in the most recent block

of iterations where the number of clusters is C∗ + 1;
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Appendix B

Bayesian Registration for One Cluster

B.1 Likelihood and Bayesian Analysis

The full details of our Bayesian registration and clustering algorithm is given in

Section 3.2. Assuming one cluster (C = 1), we provide a summary of the algorithm

that aligns curves in that cluster.

To estimate the warping function hi for the i-th observation, a discrete approxima-

tion generated by a Dirichlet distribution is utilized [Cheng et al., 2015]. Without loss

of generality, let us assume that the time domain T = [0, 1]. Any general time domain

[T1, T2] may be converted into [0, 1] by the transformation g(t) = (t− T1)/(T2 − T1).

Let γi1, γi2, . . . , γiM ∼ Dir(α), where α is a M -vector of positive parameters.

For the Dirichlet distribution, we have ∑j γij = 1, which suggests that the linear

interpolation of the cumulative sum over γij can serve as a discrete approximation of

the continuous warping hi. The parameter M controls the smoothness of the approx-

imation. A large M results in a smoother approximation, but more computational

burden.

The hyperparameter α can be chosen to affect the “concentration” of the warping

functions relative to the 45◦ reference line, which corresponds to no warping. Small

values in α allow more variability in each step of the approximation, and vice versa.

We assume that spline coefficient β ∼ MVN(β0,Γ). It will be seen later that the

full conditional distribution of β is still multivariate normal. We model the precision

parameter τ = 1/σ2 with a (conjugate) gamma prior, i.e., τ ∼ Gamma(κ, θ).
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Our prior model assumes the vertical shift Si for the i-th observation isUnif (−φ, φ)

for some positive φ. On the stretching/shrinking factors ai, we place independent

N(1, σ2
a) priors, i = 1, 2, . . . , N.

Under the preceding model assumptions in conjunction with the above prior dis-

tributions on the parameters, the joint distribution of the data and parameters is

L(β, . . . , γN , τ, s1, . . . , sN , a1, . . . , aN ,y1, . . . ,yN )

=
N∏
i=1
P(yi|β, τ, s1, . . . , sN , a1, . . . , aN )P(β|β0,Γ)

N∏
i=1
P(γi|α)P(τ |κ, θ)

N∏
i=1
P(si|φ)

N∏
i=1
P(ai|σ2

a)

∝
N∏
i=1

τK/2 exp
{
−1

2τ ‖yi − aiφ[γi(t)]β − si‖2
}

exp
{
−1

2(β − β0)′Γ−1(β − β0)
}

N∏
i=1

M∏
m=1

γαm−1
im τκ+1 exp{−τθ}

N∏
i=1

1{−φ<si<φ}
N∏
c=1

exp
{
−1

2(ai − 1)2
}

∝ τKn/2 exp
{
−1

2τ
N∑
i=1
‖yi − aiφ[γi(t)]β − si‖2

}
C∏
c=1

exp
{
−1

2(β − β0)′Γ−1(β − β0)
}

N∏
i=1

M∏
m=1

γαm−1
im exp{−τθ}

N∏
i=1

1{−φ<si<φ} exp
{
−1

2

N∑
i=1

(ai − 1)2
}
.

This joint distribution will be used in Section 4 to obtain the relevant full conditional

distributions for the MCMC algorithm.

B.2 Sampling Algorithm

Due to the complexity of the proposed model, an analytical posterior derivation is

intractable, so our inference is based on MCMC sampling of the posterior distribution.

At iteration t, the MCMC algorithm is as follows:

• Metropolis-Hastings Algorithm for Sampling Warping γi

We update γi1, . . . , γiM−1. The two endpoints satisfy the conditions γi0 =

0, and γiM = 1 − ∑M−1
j=1 γij, because of the constraints of the warping func-

tion, and hence are not involved in the updating procedure. After updating the
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zi, we propose a value of γ∗ij from a truncated normal with mean γ
[t−1]
ij and

variance σ2
γ on [0, γiM + γij] to guarantee a positive γ∗ij and γ∗iM . We accept the

proposed value with probability

λ = min

1,
exp

{
−1

2τ
[t−1]

∥∥∥∥yi − a[t−1]
i φ[γ∗(j)i (t)]∏C

c=1 β
[t−1]z[t]

ic
c − s[t−1]

i

∥∥∥∥2
}

exp
{
−1

2τ
[t−1]

∥∥∥∥yi − a[t−1]
i φ[γ(j−1)

i (t)]∏C
c=1 β

[t−1]z[t]
ic

c − s[t−1]
i

∥∥∥∥2
}×

(γ∗ij)αj−1(γ∗iM)αM−1
[
Φ
(
r

[t]
ij −γ

∗
ij

σγ

)
− Φ

(
−γ∗ij
σγ

)]

(γ[t−1]
ij )αj−1(γ[t−1]

iM )αM−1

[
Φ
(
r

[t]
ij −γ

[t−1]
ij

σγ

)
− Φ

(
−γ[t−1]

ij

σγ

)]


where γ(j)
i is the warping function with the jump updated through the j-th

element, and Φ is the standard normal CDF.

• Gibbs Sampling for Spline Coefficients β
After updating the γi’s , let n denote the number of observations in the sample,
the full conditional of β is given by

P(β|rest)

∝ exp
{
−1

2τ
[t−1]

n∑
l=1

∥∥∥yl − a[t−1]
i φ[γ[t]

l (t)]β − s[t−1]
l

∥∥∥2
}

exp
{
−1

2(β − β0)′Γ−1(β − β0)
}

∝ exp

−
1
2β
′

(
τ [t−1]

n∑
l=1

[(
a

[t−1]
l

)2
φ′[γ[t]

l (t)]φ[γ[t]
l (t)] + Γ−1

])
︸ ︷︷ ︸

call it A

β−

β′

(
τ [t−1]

n∑
l=1

a
[t−1]
l φ′[γ[t]

l (t)](yl − s[t−1]
l )′ + Γ−1β0

)
︸ ︷︷ ︸

call it C


∝ exp

{
−1

2(β −A−1C)′A(β −A−1C)
}
.

Therefore,

β|rest ∼ MVN(A−1C,A−1).

• Gibbs Sampling for Precision τ

After updating the γi’s and β’s, the full conditional distribution of τ is given
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by

P(τ |rest)

∝ τKn/2 exp
{
−1

2τ
n∑
i=1

∥∥∥yi − a[t−1]
i φ(γ[t]

i (t))β[t] − s[t−1]
i

∥∥∥2
}
τκ−1 exp {−τθ}

∝ τKn/2+κ−1 exp
{
−τ

(
1
2

n∑
i=1

∥∥∥yi − a[t−1]
i φ(γ[t]

i (t))β[t] − s[t−1]
i

∥∥∥2
+ θ

)}
.

It follows that

τ |rest ∼ Gamma
(
Kn/2 + κ,

1
2

n∑
i=1

∥∥∥yi − a[t−1]
i φ(γ[t]

i (t))β[t] − s[t−1]
i

∥∥∥2
+ θ

)
.

• Gibbs Sampling for Vertical Shift Si

After updating the γi’s, β, and τ , the full conditional distribution of Si is given

by

P(si|rest)

∝ exp
{
−1

2τ
[t]
∥∥∥yi − a[t−1]

i φ(γ[t]
i (t))β[t] − si

∥∥∥2
}
1{−φ<si<φ}.

To simplify the notation, let us define dl as the l-th element of the vector

yi − a
[t−1]
i φ(γ[t]

i (t))β[t]
c . The posterior then is

P(si|rest) ∝ exp
{
−1

2τ
[t]

K∑
l=1

(si − dl)2
}
1{−φ<si<φ}

∝ exp
{
−1

2τ
[t]

K∑
l=1

(s2
i − dlsi)2

}
1{−φ<si<φ}

∝ exp
{
−1

2τ
[t]K(si −

K∑
l=1

dl/K)2
}
1{−φ<si<φ}

The normal kernel indicates that the posterior distribution of the vertical shift

Si is a truncated normal with mean ∑K
l=1 dl/K, and variance 1/(τ [t]K), i.e.,

Si|rest ∼ N

(∑K
l=1 dl
K

,
1

τ [t]K

)
1{−φ<si<φ}.
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• Gibbs Sampling for Stretching/Shrinking Factor ai

After updating the γi’s, β, τ , and si’s, the full conditional distribution of ai is

given by

P(ai| rest)

∝ exp
{
−1

2τ
[t]
∥∥∥yi − aiφ(γ[t]

i (t))β[t] − s[t]
i

∥∥∥2
}

exp
{
− 1

2σ2
a

(ai − 1)2
}
.

For economy of notation, let us denote the l-th element of φ(γ[t]
i (t))β[t] and yi

by µ[t]
il and yil, respectively. The posterior becomes

P(ai| rest)

∝ exp
{
−1

2τ
[t]
[
K∑
l=1

a2
i (µ

[t]
il )2 −

K∑
l=1

2aiµ[t]
il (yil − s

[t]
i )
]}

exp
{
− 1

2σ2
a

a2
i + 1

σ2
a

ai

}

∝ exp
{
−1

2

[
1
σ2
a

+ τ [t]
K∑
l=1

(µ[t]
il )2

]
a2
i +

[
τ [t]

K∑
l=1

µ
[t]
il (yil − s

[t]
i ) + 1

σ2
a

]
ai

}
.

By completing the square, we have

ai| rest ∼ N

τ [t]∑K
l=1 µ

[t]
il (yil − s

[t]
i ) + 1/σ2

a

1/σ2
a + τ [t]∑K

l=1(µ[t]
il )2

,
1

1/σ2
a + τ [t]∑K

l=1(µ[t]
il )2

 .

87



www.manaraa.com

Appendix C

Derivation of the Gradient for Optimizing γi

From the numerical experiments of the full Bayesian algorithm, the choice ofM = 20

usually provides a good approximation of warping functions for most cases. Although

the Nelder-Mead method offers numerical differentiation in the constrOptim func-

tion in R, it works poorly if the dimension of the problem is high. In this section, we

derive the derivative of (5.7) with respect to γik for the i-th observation.

First notice the line between the (l − 1)-st jump and the l-th jump is given by

γi(t) =
l−1∑
j=1

γij + γil
t− l−1

M
1
M

=
l−1∑
j=1

γij + γil(tM − l + 1), (C.1)

for t ∈ [ l
M
, l+1
M

], and 1 ≤ l ≤M − 2. If t falls into the last segment, then

γi(t) =
M−1∑
j=1

γij + (1−
M−1∑
j=1

γij)(Mt−M + 1)

= (M −Mt)
M−1∑
j=1

γij + (Mt−M + 1) (C.2)

Based on (C.1) and (C.2), there are four possible ways a point tn could be invovled

in ∂γi(t)/∂γik depending on the location of tn. A pictorial illustration of these four

cases is given in Figure C.1. Let us examine these four cases one by one.

1. Suppose m−1
M
≤ tn <

m
M
, and m < k. Then tn is not involved in the derivative.

That is,
∂

∂rik
γi(tn) = 0.
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2. Suppose k−1
M
≤ tn <

k
M
, then

∂

∂rik
γi(tn) = Mtn − k + 1.

3. Suppose m−1
M
≤ tn ≤ m

M
, and k < m ≤M − 1, then

∂

∂rik
γi(tn) = 1.

4. Suppose M−1
M

< tn ≤ 1, i.e., tn is in the last segment of the approximation, then

∂

∂rik
γi(tn) = M −Mtn.

Now, let us derive the derivative of φ[γi(tn)](Σβc + µ∗βc(µ
∗
βc

)T )φT [γi(tn)] with re-

spect to γik. Denote Ac = Σβc +µ∗βc(µ
∗
βc

)T . Denote φj(·) and φ′j(·) as the j-th basis

function and its derivative, respectively. Then

∂

∂rik

{
φ[γi(tn)]AcφT [γi(tn)]

}

= ∂

∂rik

{ q∑
j=1

q∑
l=1

Ac
(jl)φj[γi(tn)]φl[γi(tn)]

}

=
q∑
j=1

q∑
l=1

Ac
(jl)

{
φ′j[γi(tn)]φl[γi(tn)] + φ′l[γi(tn)]φj[γi(tn)]

}
∂

∂rik
γi(tn)

= 2
[
∂

∂rik
γi(tn)

]
φ[γi(tn)]Ac {φ′[γi(tn)]}T , (C.3)

where φ′(·) is a vector of the derivatives of the basis function. By a similar argument,

we have

∂

∂rik

{
φ[γi(tn)]µ∗βc

}
=
[
∂

∂rik
γi(tn)

]
φ′[γi(tn)]µ∗βc . (C.4)
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Putting (C.3) and (C.4) together, the derivative is given by

∂

∂rik
ln q∗(γi)

= −1
2

C∑
c=1

{
ricµ

∗
τ

[ ∑
j: k−1

M
≤tj< k

M

[
(Mtj − k + 1)[(σ2

ai)
∗ + (µ∗ai)

2]φ[γi(tn)]Ac {φ′[γi(tn)]
}T

−2µ∗aiyij(Mtj − k + 1)φ′[γi(tn)]µ∗βc + 2µ∗aiµ
∗
si(Mtj − k + 1)φ′[γi(tn)]µ∗βc

]
+

∑
j:K+1

M
≤tj<M−1

M

[
[(σ2

ai)
∗ + (µ∗ai)

2]φ[γi(tn)]Ac {φ′[γi(tn)]
}T

−2µ∗aiyijφ
′[γi(tn)]µ∗βc + 2µ∗aiµ

∗
siφ
′[γi(tn)]µ∗βc

]
+

∑
j:M−1

M
≤tj≤1

[
(M −Mtj)[(σ2

ai)
∗ + (µ∗ai)

2]φ[γi(tn)]Ac {φ′[γi(tn)]
}T

−2µ∗aiyij(M −Mtj)φ′[γi(tn)]µ∗βc + 2µ∗aiµ
∗
si(M −Mtj)φ′[γi(tn)]µ∗βc

]]}

+(α0 − 1) 1
γik
− (α0 − 1) 1

1−
∑M−1
j=1 γij

. (C.5)
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Figure C.1 An example how to calculate ∂
∂γi5

γi(tj): the four cases are illustrated in the
white, gray, purple, and red segments, respectively. The dotted vertical lines represent
time t. we approximate the warping function with M = 20.
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Appendix D

Convergence Criterion

Let us denote the parameter vector θ = (β,γ,Z,p,a, s, τ). The logarithm of the

lower bound of the approximation is given by

Eq(θ−γ)[lnP(Y,γ,θ−γ)− ln q(θ−γ)]

= E[lnP(Y|θ)] + E[lnP(β)] + E[lnP(Z)] + E[lnP(p)] + E[lnP(a)] + E[lnP(s)]

+E[lnP(τ)]− E[ln q(β)]− E[ln q(Z)]− E[ln q∗(p)]− E[ln q∗(a)]− E[ln q∗(s)]

+E[ln q∗(τ)]. (D.1)

The value of (D.1) should be increasing across iterations, and we monitor it until

a certain convergence criterion is satisfied. Monitoring the lower bound not only

provides us a stopping criterion for the iterations but also helps us check the math-

ematical derivations [Bishop, 2006, Ormerod and Wand, 2010]. Note that we have

omitted the subscript of the expectation in (D.1) to unclutter the notation, the ex-

pectations are taken with respect to q∗(θ−γ) of the current iteration. Let us derive

all expectations in (D.1) term by term.

E[lnP(Y|θ)]

= E
(
−KN2 ln(2π) + KN

2 ln(τ)− 1
2τ

N∑
i=1

C∑
c=1

zic ‖yi − aiφ[γi(t)]βc − si‖2
)

= −KN2 ln(2π) + KN

2 [ψ(κ∗)− ln(θ∗)]− 1
2µ
∗
τ

N∑
i=1

C∑
c=1

ricEβ,a,s ‖yi − aiφ[γi(t)]βc − si‖
2]

where κ∗, θ∗, and the expectation of the norm are given by (5.10), (5.11), and (5.5),

respectively.
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For the terms involving βc, assuming Γc = I and β0
c = 0, we have

E[lnP(βc)] = E
(
−q2 ln(2π)− 1

2 ln |I| − 1
2β

T
c βc

)
= −q2 ln(2π)− 1

2E[tr(βcβTc )]

= −q2 ln(2π)− 1
2tr(A

−1
c + A−1

c cccTc A−1
c ),

and

E ln q∗(βc)

= E
(
−q2 ln(2π)− 1

2 ln |A−1
c | −

1
2(βc −A−1

c cc)TAc(βc −A−1
c cc)

)
= −q2 ln(2π)− 1

2 ln |A−1
c | −

1
2E(βTc Akβc − 2βTc cc + cTc A−1

c cc)

= −q2 ln(2π)− 1
2 ln |A−1

c | −
1
2
{
E
[
(A 1

2βc)T (A 1
2βc)

]
− 2cTc A−1

c cc + cTA−1
c cc

}
= −q2 ln(2π)− 1

2 ln |A−1
c | −

1
2tr

[
E
(

A
1
2
c βcβ

T
c A

1
2
c

)]
+ 1

2cTc A−1
c cc

= −q2 ln(2π)− 1
2 ln |A−1

c | −
1
2tr

(
I + A−

1
2

c cccTc A−
1
2

c

)
+ 1

2cTc A−1
c cc

= −q2 ln(2π)− 1
2 ln |A−1

c | −
q

2 .

For the membership vector Z,

E lnP(zi) = E
(

C∑
c=1

zic ln pc
)

=
C∑
c=1

E(zic)E(ln pc)

=
C∑
c=1
{ric [ψ (αc)− ψ (α̂)]} ,

where αc and α̂ are given by (5.8) and (5.9), respectively.

E ln q∗(zi) = E
(

C∑
c=1

zic ln ric
)

=
C∑
c=1

E(zic) ln ric

=
C∑
c=1

[ric ln ric] .
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For the cluster probability p. If we define C(η) = Γ(cη)/∏C
c=1 Γ(η), we have

E lnP(p) = E
(

lnC(η) + (η − 1)
C∑
c=1

ln pc
)

= lnC(η) + (η − 1)
C∑
c=1

[ψ (αc)− ψ (α̂)] ,

where η = (η, . . . , η) is a vector of hyperparameters for p. Let us define

C(α) = Γ(Cη +
C∑
c=1

N∑
i=1

ric)/
C∏
c=1

Γ(
N∑
i=1

ric + η),

then

E ln q∗(p) = E
(

lnC(α) +
C∑
c=1

(αc − 1) ln pc
)

= lnC(α) +
C∑
c=1

(αc − 1) [ψ (αc)− ψ (α̂)] .

For the stretching/shrinking factor ai, we have

E lnP(ai)

= ln 1√
2π
− ln σa −

1
2σ2

a

E(a2
i − 2ai + 1)

= ln 1√
2π
− ln σa −

1
2σ2

a

[
(σ2

ai
)∗ + (µ∗ai)

2 − 2µ∗ai + 1
]
,

and

E ln q∗(ai)

= ln 1√
2π
− ln σ∗ai −

1
2(σ∗ai)2E

[
a2
i − 2aiµ∗ai + (µ∗ai)

2
]

= ln 1√
2π
− ln σ∗ai −

1
2(σ2

ai
)∗
[
(σ2

ai
)∗ + (µ∗ai)

2 − 2(µ∗ai)
2 + (µ∗ai)

2
]

= ln 1√
2π
− ln σ∗ai −

1
2 .

The expressions for µ∗ai and (σ2
ai

)∗ are given in (5.12) and (5.13), respectively.

For the shift si,

E lnP(si) = E
(

ln 1{−φ<si<φ}
1

2φ

)
= − ln(2φ).
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For the truncated normal q∗(si), the density is given by

q∗(si) =
1√

2πσ̃si
exp

{
−1

2
(si−µ̃si )

2

σ̃2
si

}
Φ(φ−µ̃si

σ̃si
)− Φ(−φ−µ̃si

σ̃si
)

1{−φ<si<φ}.

Let us denote Zsi = Φ(φ−µ̃si
σ̃si

)− Φ(−φ−µ̃si
σ̃si

). Then,

E ln q∗(si) = E
(
− ln σ̃si −

1
2 ln(2π)− lnZsi −

1
2σ̃2

si

(s2
i − 2siµ̃si + µ̃2

si
)
)

= − ln σ̃si −
1
2 ln(2π)− lnZsi −

1
2σ̃2

si

(
(σ2

si
)∗ + (µ∗si)

2 − 2µ̃siµ∗si + µ̃2
si

)
.

The expressions for µ̃si , σ̃2
si
, µ∗ai , and (σ∗ai)

2 are given by (5.14), (5.15), (5.16), and

(5.17), respectively.

Finally, for the expectations related to τ , we have

E[lnP(τ)] = E(κ ln θ − ln Γ(κ) + (κ− 1) ln τ − θτ)

= κ ln θ − ln Γ(κ) + (κ− 1)[ψ(κ∗)− ln(θ∗)]− θκ
∗

θ∗
,

and

E[ln q∗(τ)] = E(κ∗ ln θ∗ − ln Γ(κ∗) + (κ∗ − 1) ln τ − θ∗τ)

= κ∗ ln θ∗ − ln Γ(κ∗) + (κ∗ − 1)[ψ(κ∗)− ln(θ∗)]− κ∗.
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